Whakaoti mō a, b
a=-\frac{1}{4}=-0.25
b = \frac{3}{2} = 1\frac{1}{2} = 1.5
Tohaina
Kua tāruatia ki te papatopenga
4a-2b+4=0,64a+8b+4=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4a-2b+4=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
4a-2b=-4
Me tango 4 mai i ngā taha e rua o te whārite.
4a=2b-4
Me tāpiri 2b ki ngā taha e rua o te whārite.
a=\frac{1}{4}\left(2b-4\right)
Whakawehea ngā taha e rua ki te 4.
a=\frac{1}{2}b-1
Whakareatia \frac{1}{4} ki te -4+2b.
64\left(\frac{1}{2}b-1\right)+8b+4=0
Whakakapia te \frac{b}{2}-1 mō te a ki tērā atu whārite, 64a+8b+4=0.
32b-64+8b+4=0
Whakareatia 64 ki te \frac{b}{2}-1.
40b-64+4=0
Tāpiri 32b ki te 8b.
40b-60=0
Tāpiri -64 ki te 4.
40b=60
Me tāpiri 60 ki ngā taha e rua o te whārite.
b=\frac{3}{2}
Whakawehea ngā taha e rua ki te 40.
a=\frac{1}{2}\times \frac{3}{2}-1
Whakaurua te \frac{3}{2} mō b ki a=\frac{1}{2}b-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=\frac{3}{4}-1
Whakareatia \frac{1}{2} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=-\frac{1}{4}
Tāpiri -1 ki te \frac{3}{4}.
a=-\frac{1}{4},b=\frac{3}{2}
Kua oti te pūnaha te whakatau.
4a-2b+4=0,64a+8b+4=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-2\\64&8\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-4\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-2\\64&8\end{matrix}\right))\left(\begin{matrix}4&-2\\64&8\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\64&8\end{matrix}\right))\left(\begin{matrix}-4\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-2\\64&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\64&8\end{matrix}\right))\left(\begin{matrix}-4\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\64&8\end{matrix}\right))\left(\begin{matrix}-4\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{8}{4\times 8-\left(-2\times 64\right)}&-\frac{-2}{4\times 8-\left(-2\times 64\right)}\\-\frac{64}{4\times 8-\left(-2\times 64\right)}&\frac{4}{4\times 8-\left(-2\times 64\right)}\end{matrix}\right)\left(\begin{matrix}-4\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}&\frac{1}{80}\\-\frac{2}{5}&\frac{1}{40}\end{matrix}\right)\left(\begin{matrix}-4\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\left(-4\right)+\frac{1}{80}\left(-4\right)\\-\frac{2}{5}\left(-4\right)+\frac{1}{40}\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\\\frac{3}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
a=-\frac{1}{4},b=\frac{3}{2}
Tangohia ngā huānga poukapa a me b.
4a-2b+4=0,64a+8b+4=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
64\times 4a+64\left(-2\right)b+64\times 4=0,4\times 64a+4\times 8b+4\times 4=0
Kia ōrite ai a 4a me 64a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 64 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
256a-128b+256=0,256a+32b+16=0
Whakarūnātia.
256a-256a-128b-32b+256-16=0
Me tango 256a+32b+16=0 mai i 256a-128b+256=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-128b-32b+256-16=0
Tāpiri 256a ki te -256a. Ka whakakore atu ngā kupu 256a me -256a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-160b+256-16=0
Tāpiri -128b ki te -32b.
-160b+240=0
Tāpiri 256 ki te -16.
-160b=-240
Me tango 240 mai i ngā taha e rua o te whārite.
b=\frac{3}{2}
Whakawehea ngā taha e rua ki te -160.
64a+8\times \frac{3}{2}+4=0
Whakaurua te \frac{3}{2} mō b ki 64a+8b+4=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
64a+12+4=0
Whakareatia 8 ki te \frac{3}{2}.
64a+16=0
Tāpiri 12 ki te 4.
64a=-16
Me tango 16 mai i ngā taha e rua o te whārite.
a=-\frac{1}{4}
Whakawehea ngā taha e rua ki te 64.
a=-\frac{1}{4},b=\frac{3}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}