Whakaoti mō a, v
a=2
v=4
Tohaina
Kua tāruatia ki te papatopenga
4a+5v=28,6a+3v=24
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4a+5v=28
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
4a=-5v+28
Me tango 5v mai i ngā taha e rua o te whārite.
a=\frac{1}{4}\left(-5v+28\right)
Whakawehea ngā taha e rua ki te 4.
a=-\frac{5}{4}v+7
Whakareatia \frac{1}{4} ki te -5v+28.
6\left(-\frac{5}{4}v+7\right)+3v=24
Whakakapia te -\frac{5v}{4}+7 mō te a ki tērā atu whārite, 6a+3v=24.
-\frac{15}{2}v+42+3v=24
Whakareatia 6 ki te -\frac{5v}{4}+7.
-\frac{9}{2}v+42=24
Tāpiri -\frac{15v}{2} ki te 3v.
-\frac{9}{2}v=-18
Me tango 42 mai i ngā taha e rua o te whārite.
v=4
Whakawehea ngā taha e rua o te whārite ki te -\frac{9}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=-\frac{5}{4}\times 4+7
Whakaurua te 4 mō v ki a=-\frac{5}{4}v+7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-5+7
Whakareatia -\frac{5}{4} ki te 4.
a=2
Tāpiri 7 ki te -5.
a=2,v=4
Kua oti te pūnaha te whakatau.
4a+5v=28,6a+3v=24
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&5\\6&3\end{matrix}\right)\left(\begin{matrix}a\\v\end{matrix}\right)=\left(\begin{matrix}28\\24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&5\\6&3\end{matrix}\right))\left(\begin{matrix}4&5\\6&3\end{matrix}\right)\left(\begin{matrix}a\\v\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\6&3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&5\\6&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\v\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\6&3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\v\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\6&3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\v\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-5\times 6}&-\frac{5}{4\times 3-5\times 6}\\-\frac{6}{4\times 3-5\times 6}&\frac{4}{4\times 3-5\times 6}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\v\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{5}{18}\\\frac{1}{3}&-\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\v\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\times 28+\frac{5}{18}\times 24\\\frac{1}{3}\times 28-\frac{2}{9}\times 24\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\v\end{matrix}\right)=\left(\begin{matrix}2\\4\end{matrix}\right)
Mahia ngā tātaitanga.
a=2,v=4
Tangohia ngā huānga poukapa a me v.
4a+5v=28,6a+3v=24
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 4a+6\times 5v=6\times 28,4\times 6a+4\times 3v=4\times 24
Kia ōrite ai a 4a me 6a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
24a+30v=168,24a+12v=96
Whakarūnātia.
24a-24a+30v-12v=168-96
Me tango 24a+12v=96 mai i 24a+30v=168 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
30v-12v=168-96
Tāpiri 24a ki te -24a. Ka whakakore atu ngā kupu 24a me -24a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
18v=168-96
Tāpiri 30v ki te -12v.
18v=72
Tāpiri 168 ki te -96.
v=4
Whakawehea ngā taha e rua ki te 18.
6a+3\times 4=24
Whakaurua te 4 mō v ki 6a+3v=24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
6a+12=24
Whakareatia 3 ki te 4.
6a=12
Me tango 12 mai i ngā taha e rua o te whārite.
a=2
Whakawehea ngā taha e rua ki te 6.
a=2,v=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}