Whakaoti mō a, b
a = \frac{22}{7} = 3\frac{1}{7} \approx 3.142857143
b=-\frac{5}{7}\approx -0.714285714
Tohaina
Kua tāruatia ki te papatopenga
4a+5b=9,2a-b=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4a+5b=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
4a=-5b+9
Me tango 5b mai i ngā taha e rua o te whārite.
a=\frac{1}{4}\left(-5b+9\right)
Whakawehea ngā taha e rua ki te 4.
a=-\frac{5}{4}b+\frac{9}{4}
Whakareatia \frac{1}{4} ki te -5b+9.
2\left(-\frac{5}{4}b+\frac{9}{4}\right)-b=7
Whakakapia te \frac{-5b+9}{4} mō te a ki tērā atu whārite, 2a-b=7.
-\frac{5}{2}b+\frac{9}{2}-b=7
Whakareatia 2 ki te \frac{-5b+9}{4}.
-\frac{7}{2}b+\frac{9}{2}=7
Tāpiri -\frac{5b}{2} ki te -b.
-\frac{7}{2}b=\frac{5}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
b=-\frac{5}{7}
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=-\frac{5}{4}\left(-\frac{5}{7}\right)+\frac{9}{4}
Whakaurua te -\frac{5}{7} mō b ki a=-\frac{5}{4}b+\frac{9}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=\frac{25}{28}+\frac{9}{4}
Whakareatia -\frac{5}{4} ki te -\frac{5}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=\frac{22}{7}
Tāpiri \frac{9}{4} ki te \frac{25}{28} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=\frac{22}{7},b=-\frac{5}{7}
Kua oti te pūnaha te whakatau.
4a+5b=9,2a-b=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&5\\2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}9\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&5\\2&-1\end{matrix}\right))\left(\begin{matrix}4&5\\2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\2&-1\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&5\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\2&-1\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\2&-1\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-5\times 2}&-\frac{5}{4\left(-1\right)-5\times 2}\\-\frac{2}{4\left(-1\right)-5\times 2}&\frac{4}{4\left(-1\right)-5\times 2}\end{matrix}\right)\left(\begin{matrix}9\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{5}{14}\\\frac{1}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}9\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 9+\frac{5}{14}\times 7\\\frac{1}{7}\times 9-\frac{2}{7}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{22}{7}\\-\frac{5}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
a=\frac{22}{7},b=-\frac{5}{7}
Tangohia ngā huānga poukapa a me b.
4a+5b=9,2a-b=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 4a+2\times 5b=2\times 9,4\times 2a+4\left(-1\right)b=4\times 7
Kia ōrite ai a 4a me 2a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
8a+10b=18,8a-4b=28
Whakarūnātia.
8a-8a+10b+4b=18-28
Me tango 8a-4b=28 mai i 8a+10b=18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10b+4b=18-28
Tāpiri 8a ki te -8a. Ka whakakore atu ngā kupu 8a me -8a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
14b=18-28
Tāpiri 10b ki te 4b.
14b=-10
Tāpiri 18 ki te -28.
b=-\frac{5}{7}
Whakawehea ngā taha e rua ki te 14.
2a-\left(-\frac{5}{7}\right)=7
Whakaurua te -\frac{5}{7} mō b ki 2a-b=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
2a=\frac{44}{7}
Me tango \frac{5}{7} mai i ngā taha e rua o te whārite.
a=\frac{22}{7}
Whakawehea ngā taha e rua ki te 2.
a=\frac{22}{7},b=-\frac{5}{7}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}