Whakaoti mō y, x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4-y-2x=0
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
-y-2x=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2+y-2x=0
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-2x=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-y-2x=-4,y-2x=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-y-2x=-4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
-y=2x-4
Me tāpiri 2x ki ngā taha e rua o te whārite.
y=-\left(2x-4\right)
Whakawehea ngā taha e rua ki te -1.
y=-2x+4
Whakareatia -1 ki te -4+2x.
-2x+4-2x=-2
Whakakapia te -2x+4 mō te y ki tērā atu whārite, y-2x=-2.
-4x+4=-2
Tāpiri -2x ki te -2x.
-4x=-6
Me tango 4 mai i ngā taha e rua o te whārite.
x=\frac{3}{2}
Whakawehea ngā taha e rua ki te -4.
y=-2\times \frac{3}{2}+4
Whakaurua te \frac{3}{2} mō x ki y=-2x+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-3+4
Whakareatia -2 ki te \frac{3}{2}.
y=1
Tāpiri 4 ki te -3.
y=1,x=\frac{3}{2}
Kua oti te pūnaha te whakatau.
4-y-2x=0
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
-y-2x=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2+y-2x=0
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-2x=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-y-2x=-4,y-2x=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right))\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right))\left(\begin{matrix}-4\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right))\left(\begin{matrix}-4\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-2\\1&-2\end{matrix}\right))\left(\begin{matrix}-4\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-\left(-2\right)-\left(-2\right)}&-\frac{-2}{-\left(-2\right)-\left(-2\right)}\\-\frac{1}{-\left(-2\right)-\left(-2\right)}&-\frac{1}{-\left(-2\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-4\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\-\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-4\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\left(-4\right)+\frac{1}{2}\left(-2\right)\\-\frac{1}{4}\left(-4\right)-\frac{1}{4}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\\frac{3}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
y=1,x=\frac{3}{2}
Tangohia ngā huānga poukapa y me x.
4-y-2x=0
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
-y-2x=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2+y-2x=0
Whakaarohia te whārite tuarua. Tangohia te 2x mai i ngā taha e rua.
y-2x=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-y-2x=-4,y-2x=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-y-y-2x+2x=-4+2
Me tango y-2x=-2 mai i -y-2x=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y-y=-4+2
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2y=-4+2
Tāpiri -y ki te -y.
-2y=-2
Tāpiri -4 ki te 2.
y=1
Whakawehea ngā taha e rua ki te -2.
1-2x=-2
Whakaurua te 1 mō y ki y-2x=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x=-3
Me tango 1 mai i ngā taha e rua o te whārite.
y=1,x=\frac{3}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}