Whakaoti mō y, x
x = \frac{217}{13} = 16\frac{9}{13} \approx 16.692307692
y=\frac{6}{13}\approx 0.461538462
Graph
Tohaina
Kua tāruatia ki te papatopenga
104y=48
Whakaarohia te whārite tuatahi. Whakareatia te 4 ki te 26, ka 104.
y=\frac{48}{104}
Whakawehea ngā taha e rua ki te 104.
y=\frac{6}{13}
Whakahekea te hautanga \frac{48}{104} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
3x+2\times \frac{6}{13}=51
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
3x+\frac{12}{13}=51
Whakareatia te 2 ki te \frac{6}{13}, ka \frac{12}{13}.
3x=51-\frac{12}{13}
Tangohia te \frac{12}{13} mai i ngā taha e rua.
3x=\frac{651}{13}
Tangohia te \frac{12}{13} i te 51, ka \frac{651}{13}.
x=\frac{\frac{651}{13}}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{651}{13\times 3}
Tuhia te \frac{\frac{651}{13}}{3} hei hautanga kotahi.
x=\frac{651}{39}
Whakareatia te 13 ki te 3, ka 39.
x=\frac{217}{13}
Whakahekea te hautanga \frac{651}{39} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
y=\frac{6}{13} x=\frac{217}{13}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}