Tīpoka ki ngā ihirangi matua
Whakaoti mō A, D
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3A-9D=4
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
8A-8D=2
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3A-9D=4,8A-8D=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3A-9D=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te A mā te wehe i te A i te taha mauī o te tohu ōrite.
3A=9D+4
Me tāpiri 9D ki ngā taha e rua o te whārite.
A=\frac{1}{3}\left(9D+4\right)
Whakawehea ngā taha e rua ki te 3.
A=3D+\frac{4}{3}
Whakareatia \frac{1}{3} ki te 9D+4.
8\left(3D+\frac{4}{3}\right)-8D=2
Whakakapia te 3D+\frac{4}{3} mō te A ki tērā atu whārite, 8A-8D=2.
24D+\frac{32}{3}-8D=2
Whakareatia 8 ki te 3D+\frac{4}{3}.
16D+\frac{32}{3}=2
Tāpiri 24D ki te -8D.
16D=-\frac{26}{3}
Me tango \frac{32}{3} mai i ngā taha e rua o te whārite.
D=-\frac{13}{24}
Whakawehea ngā taha e rua ki te 16.
A=3\left(-\frac{13}{24}\right)+\frac{4}{3}
Whakaurua te -\frac{13}{24} mō D ki A=3D+\frac{4}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō A hāngai tonu.
A=-\frac{13}{8}+\frac{4}{3}
Whakareatia 3 ki te -\frac{13}{24}.
A=-\frac{7}{24}
Tāpiri \frac{4}{3} ki te -\frac{13}{8} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
A=-\frac{7}{24},D=-\frac{13}{24}
Kua oti te pūnaha te whakatau.
3A-9D=4
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
8A-8D=2
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3A-9D=4,8A-8D=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right)\left(\begin{matrix}A\\D\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right))\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right)\left(\begin{matrix}A\\D\end{matrix}\right)=inverse(\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-9\\8&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\D\end{matrix}\right)=inverse(\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}A\\D\end{matrix}\right)=inverse(\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}A\\D\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{3\left(-8\right)-\left(-9\times 8\right)}&-\frac{-9}{3\left(-8\right)-\left(-9\times 8\right)}\\-\frac{8}{3\left(-8\right)-\left(-9\times 8\right)}&\frac{3}{3\left(-8\right)-\left(-9\times 8\right)}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}A\\D\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{3}{16}\\-\frac{1}{6}&\frac{1}{16}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}A\\D\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\times 4+\frac{3}{16}\times 2\\-\frac{1}{6}\times 4+\frac{1}{16}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}A\\D\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{24}\\-\frac{13}{24}\end{matrix}\right)
Mahia ngā tātaitanga.
A=-\frac{7}{24},D=-\frac{13}{24}
Tangohia ngā huānga poukapa A me D.
3A-9D=4
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
8A-8D=2
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3A-9D=4,8A-8D=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\times 3A+8\left(-9\right)D=8\times 4,3\times 8A+3\left(-8\right)D=3\times 2
Kia ōrite ai a 3A me 8A, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
24A-72D=32,24A-24D=6
Whakarūnātia.
24A-24A-72D+24D=32-6
Me tango 24A-24D=6 mai i 24A-72D=32 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-72D+24D=32-6
Tāpiri 24A ki te -24A. Ka whakakore atu ngā kupu 24A me -24A, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-48D=32-6
Tāpiri -72D ki te 24D.
-48D=26
Tāpiri 32 ki te -6.
D=-\frac{13}{24}
Whakawehea ngā taha e rua ki te -48.
8A-8\left(-\frac{13}{24}\right)=2
Whakaurua te -\frac{13}{24} mō D ki 8A-8D=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō A hāngai tonu.
8A+\frac{13}{3}=2
Whakareatia -8 ki te -\frac{13}{24}.
8A=-\frac{7}{3}
Me tango \frac{13}{3} mai i ngā taha e rua o te whārite.
A=-\frac{7}{24}
Whakawehea ngā taha e rua ki te 8.
A=-\frac{7}{24},D=-\frac{13}{24}
Kua oti te pūnaha te whakatau.