Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

36x-5y=7,6x+3y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
36x-5y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
36x=5y+7
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{36}\left(5y+7\right)
Whakawehea ngā taha e rua ki te 36.
x=\frac{5}{36}y+\frac{7}{36}
Whakareatia \frac{1}{36} ki te 5y+7.
6\left(\frac{5}{36}y+\frac{7}{36}\right)+3y=8
Whakakapia te \frac{5y+7}{36} mō te x ki tērā atu whārite, 6x+3y=8.
\frac{5}{6}y+\frac{7}{6}+3y=8
Whakareatia 6 ki te \frac{5y+7}{36}.
\frac{23}{6}y+\frac{7}{6}=8
Tāpiri \frac{5y}{6} ki te 3y.
\frac{23}{6}y=\frac{41}{6}
Me tango \frac{7}{6} mai i ngā taha e rua o te whārite.
y=\frac{41}{23}
Whakawehea ngā taha e rua o te whārite ki te \frac{23}{6}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{36}\times \frac{41}{23}+\frac{7}{36}
Whakaurua te \frac{41}{23} mō y ki x=\frac{5}{36}y+\frac{7}{36}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{205}{828}+\frac{7}{36}
Whakareatia \frac{5}{36} ki te \frac{41}{23} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{61}{138}
Tāpiri \frac{7}{36} ki te \frac{205}{828} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{61}{138},y=\frac{41}{23}
Kua oti te pūnaha te whakatau.
36x-5y=7,6x+3y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}36&-5\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}36&-5\\6&3\end{matrix}\right))\left(\begin{matrix}36&-5\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}36&-5\\6&3\end{matrix}\right))\left(\begin{matrix}7\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}36&-5\\6&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}36&-5\\6&3\end{matrix}\right))\left(\begin{matrix}7\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}36&-5\\6&3\end{matrix}\right))\left(\begin{matrix}7\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{36\times 3-\left(-5\times 6\right)}&-\frac{-5}{36\times 3-\left(-5\times 6\right)}\\-\frac{6}{36\times 3-\left(-5\times 6\right)}&\frac{36}{36\times 3-\left(-5\times 6\right)}\end{matrix}\right)\left(\begin{matrix}7\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{46}&\frac{5}{138}\\-\frac{1}{23}&\frac{6}{23}\end{matrix}\right)\left(\begin{matrix}7\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{46}\times 7+\frac{5}{138}\times 8\\-\frac{1}{23}\times 7+\frac{6}{23}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{61}{138}\\\frac{41}{23}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{61}{138},y=\frac{41}{23}
Tangohia ngā huānga poukapa x me y.
36x-5y=7,6x+3y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 36x+6\left(-5\right)y=6\times 7,36\times 6x+36\times 3y=36\times 8
Kia ōrite ai a 36x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 36.
216x-30y=42,216x+108y=288
Whakarūnātia.
216x-216x-30y-108y=42-288
Me tango 216x+108y=288 mai i 216x-30y=42 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-30y-108y=42-288
Tāpiri 216x ki te -216x. Ka whakakore atu ngā kupu 216x me -216x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-138y=42-288
Tāpiri -30y ki te -108y.
-138y=-246
Tāpiri 42 ki te -288.
y=\frac{41}{23}
Whakawehea ngā taha e rua ki te -138.
6x+3\times \frac{41}{23}=8
Whakaurua te \frac{41}{23} mō y ki 6x+3y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x+\frac{123}{23}=8
Whakareatia 3 ki te \frac{41}{23}.
6x=\frac{61}{23}
Me tango \frac{123}{23} mai i ngā taha e rua o te whārite.
x=\frac{61}{138}
Whakawehea ngā taha e rua ki te 6.
x=\frac{61}{138},y=\frac{41}{23}
Kua oti te pūnaha te whakatau.