Whakaoti mō f_1, f_2
f_{1} = \frac{15}{2} = 7\frac{1}{2} = 7.5
f_{2} = \frac{3}{2} = 1\frac{1}{2} = 1.5
Tohaina
Kua tāruatia ki te papatopenga
30f_{1}+40f_{2}=285,30f_{1}+30f_{2}=270
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
30f_{1}+40f_{2}=285
Kōwhiria tētahi o ngā whārite ka whakaotia mō te f_{1} mā te wehe i te f_{1} i te taha mauī o te tohu ōrite.
30f_{1}=-40f_{2}+285
Me tango 40f_{2} mai i ngā taha e rua o te whārite.
f_{1}=\frac{1}{30}\left(-40f_{2}+285\right)
Whakawehea ngā taha e rua ki te 30.
f_{1}=-\frac{4}{3}f_{2}+\frac{19}{2}
Whakareatia \frac{1}{30} ki te -40f_{2}+285.
30\left(-\frac{4}{3}f_{2}+\frac{19}{2}\right)+30f_{2}=270
Whakakapia te -\frac{4f_{2}}{3}+\frac{19}{2} mō te f_{1} ki tērā atu whārite, 30f_{1}+30f_{2}=270.
-40f_{2}+285+30f_{2}=270
Whakareatia 30 ki te -\frac{4f_{2}}{3}+\frac{19}{2}.
-10f_{2}+285=270
Tāpiri -40f_{2} ki te 30f_{2}.
-10f_{2}=-15
Me tango 285 mai i ngā taha e rua o te whārite.
f_{2}=\frac{3}{2}
Whakawehea ngā taha e rua ki te -10.
f_{1}=-\frac{4}{3}\times \frac{3}{2}+\frac{19}{2}
Whakaurua te \frac{3}{2} mō f_{2} ki f_{1}=-\frac{4}{3}f_{2}+\frac{19}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō f_{1} hāngai tonu.
f_{1}=-2+\frac{19}{2}
Whakareatia -\frac{4}{3} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
f_{1}=\frac{15}{2}
Tāpiri \frac{19}{2} ki te -2.
f_{1}=\frac{15}{2},f_{2}=\frac{3}{2}
Kua oti te pūnaha te whakatau.
30f_{1}+40f_{2}=285,30f_{1}+30f_{2}=270
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}30&40\\30&30\end{matrix}\right)\left(\begin{matrix}f_{1}\\f_{2}\end{matrix}\right)=\left(\begin{matrix}285\\270\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}30&40\\30&30\end{matrix}\right))\left(\begin{matrix}30&40\\30&30\end{matrix}\right)\left(\begin{matrix}f_{1}\\f_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}30&40\\30&30\end{matrix}\right))\left(\begin{matrix}285\\270\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}30&40\\30&30\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}f_{1}\\f_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}30&40\\30&30\end{matrix}\right))\left(\begin{matrix}285\\270\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}f_{1}\\f_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}30&40\\30&30\end{matrix}\right))\left(\begin{matrix}285\\270\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}f_{1}\\f_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{30}{30\times 30-40\times 30}&-\frac{40}{30\times 30-40\times 30}\\-\frac{30}{30\times 30-40\times 30}&\frac{30}{30\times 30-40\times 30}\end{matrix}\right)\left(\begin{matrix}285\\270\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}f_{1}\\f_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&\frac{2}{15}\\\frac{1}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}285\\270\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}f_{1}\\f_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\times 285+\frac{2}{15}\times 270\\\frac{1}{10}\times 285-\frac{1}{10}\times 270\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}f_{1}\\f_{2}\end{matrix}\right)=\left(\begin{matrix}\frac{15}{2}\\\frac{3}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
f_{1}=\frac{15}{2},f_{2}=\frac{3}{2}
Tangohia ngā huānga poukapa f_{1} me f_{2}.
30f_{1}+40f_{2}=285,30f_{1}+30f_{2}=270
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
30f_{1}-30f_{1}+40f_{2}-30f_{2}=285-270
Me tango 30f_{1}+30f_{2}=270 mai i 30f_{1}+40f_{2}=285 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
40f_{2}-30f_{2}=285-270
Tāpiri 30f_{1} ki te -30f_{1}. Ka whakakore atu ngā kupu 30f_{1} me -30f_{1}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
10f_{2}=285-270
Tāpiri 40f_{2} ki te -30f_{2}.
10f_{2}=15
Tāpiri 285 ki te -270.
f_{2}=\frac{3}{2}
Whakawehea ngā taha e rua ki te 10.
30f_{1}+30\times \frac{3}{2}=270
Whakaurua te \frac{3}{2} mō f_{2} ki 30f_{1}+30f_{2}=270. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō f_{1} hāngai tonu.
30f_{1}+45=270
Whakareatia 30 ki te \frac{3}{2}.
30f_{1}=225
Me tango 45 mai i ngā taha e rua o te whārite.
f_{1}=\frac{15}{2}
Whakawehea ngā taha e rua ki te 30.
f_{1}=\frac{15}{2},f_{2}=\frac{3}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}