Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6.8x=x+y
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 2.
6.8x-x=y
Tangohia te x mai i ngā taha e rua.
5.8x=y
Pahekotia te 6.8x me -x, ka 5.8x.
x=\frac{5}{29}y
Whakawehea ngā taha e rua o te whārite ki te 5.8, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
-\frac{5}{29}y+7y=0
Whakakapia te \frac{5y}{29} mō te x ki tērā atu whārite, -x+7y=0.
\frac{198}{29}y=0
Tāpiri -\frac{5y}{29} ki te 7y.
y=0
Whakawehea ngā taha e rua o te whārite ki te \frac{198}{29}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=0
Whakaurua te 0 mō y ki x=\frac{5}{29}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0,y=0
Kua oti te pūnaha te whakatau.
6.8x=x+y
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 2.
6.8x-x=y
Tangohia te x mai i ngā taha e rua.
5.8x=y
Pahekotia te 6.8x me -x, ka 5.8x.
5.8x-y=0
Tangohia te y mai i ngā taha e rua.
8y=x+y
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
8y-x=y
Tangohia te x mai i ngā taha e rua.
8y-x-y=0
Tangohia te y mai i ngā taha e rua.
7y-x=0
Pahekotia te 8y me -y, ka 7y.
5.8x-y=0,-x+7y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5.8&-1\\-1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5.8&-1\\-1&7\end{matrix}\right))\left(\begin{matrix}5.8&-1\\-1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5.8&-1\\-1&7\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5.8&-1\\-1&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5.8&-1\\-1&7\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5.8&-1\\-1&7\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5.8\times 7-\left(-\left(-1\right)\right)}&-\frac{-1}{5.8\times 7-\left(-\left(-1\right)\right)}\\-\frac{-1}{5.8\times 7-\left(-\left(-1\right)\right)}&\frac{5.8}{5.8\times 7-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{198}&\frac{5}{198}\\\frac{5}{198}&\frac{29}{198}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa.
x=0,y=0
Tangohia ngā huānga poukapa x me y.
6.8x=x+y
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 2.
6.8x-x=y
Tangohia te x mai i ngā taha e rua.
5.8x=y
Pahekotia te 6.8x me -x, ka 5.8x.
5.8x-y=0
Tangohia te y mai i ngā taha e rua.
8y=x+y
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
8y-x=y
Tangohia te x mai i ngā taha e rua.
8y-x-y=0
Tangohia te y mai i ngā taha e rua.
7y-x=0
Pahekotia te 8y me -y, ka 7y.
5.8x-y=0,-x+7y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5.8x-\left(-y\right)=0,5.8\left(-1\right)x+5.8\times 7y=0
Kia ōrite ai a \frac{29x}{5} me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.8.
-5.8x+y=0,-5.8x+40.6y=0
Whakarūnātia.
-5.8x+5.8x+y-40.6y=0
Me tango -5.8x+40.6y=0 mai i -5.8x+y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-40.6y=0
Tāpiri -\frac{29x}{5} ki te \frac{29x}{5}. Ka whakakore atu ngā kupu -\frac{29x}{5} me \frac{29x}{5}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-39.6y=0
Tāpiri y ki te -\frac{203y}{5}.
y=0
Whakawehea ngā taha e rua o te whārite ki te -39.6, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
-x=0
Whakaurua te 0 mō y ki -x+7y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0
Whakawehea ngā taha e rua ki te -1.
x=0,y=0
Kua oti te pūnaha te whakatau.