Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3y-6-x=0
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
3y-x=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x-9-2y=0
Whakaarohia te whārite tuarua. Tangohia te 2y mai i ngā taha e rua.
x-2y=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3y-x=6,-2y+x=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3y-x=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
3y=x+6
Me tāpiri x ki ngā taha e rua o te whārite.
y=\frac{1}{3}\left(x+6\right)
Whakawehea ngā taha e rua ki te 3.
y=\frac{1}{3}x+2
Whakareatia \frac{1}{3} ki te x+6.
-2\left(\frac{1}{3}x+2\right)+x=9
Whakakapia te \frac{x}{3}+2 mō te y ki tērā atu whārite, -2y+x=9.
-\frac{2}{3}x-4+x=9
Whakareatia -2 ki te \frac{x}{3}+2.
\frac{1}{3}x-4=9
Tāpiri -\frac{2x}{3} ki te x.
\frac{1}{3}x=13
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=39
Me whakarea ngā taha e rua ki te 3.
y=\frac{1}{3}\times 39+2
Whakaurua te 39 mō x ki y=\frac{1}{3}x+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=13+2
Whakareatia \frac{1}{3} ki te 39.
y=15
Tāpiri 2 ki te 13.
y=15,x=39
Kua oti te pūnaha te whakatau.
3y-6-x=0
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
3y-x=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x-9-2y=0
Whakaarohia te whārite tuarua. Tangohia te 2y mai i ngā taha e rua.
x-2y=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3y-x=6,-2y+x=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right))\left(\begin{matrix}6\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-\left(-2\right)\right)}&-\frac{-1}{3-\left(-\left(-2\right)\right)}\\-\frac{-2}{3-\left(-\left(-2\right)\right)}&\frac{3}{3-\left(-\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}6\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6+9\\2\times 6+3\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}15\\39\end{matrix}\right)
Mahia ngā tātaitanga.
y=15,x=39
Tangohia ngā huānga poukapa y me x.
3y-6-x=0
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
3y-x=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x-9-2y=0
Whakaarohia te whārite tuarua. Tangohia te 2y mai i ngā taha e rua.
x-2y=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3y-x=6,-2y+x=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 3y-2\left(-1\right)x=-2\times 6,3\left(-2\right)y+3x=3\times 9
Kia ōrite ai a 3y me -2y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-6y+2x=-12,-6y+3x=27
Whakarūnātia.
-6y+6y+2x-3x=-12-27
Me tango -6y+3x=27 mai i -6y+2x=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2x-3x=-12-27
Tāpiri -6y ki te 6y. Ka whakakore atu ngā kupu -6y me 6y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-x=-12-27
Tāpiri 2x ki te -3x.
-x=-39
Tāpiri -12 ki te -27.
x=39
Whakawehea ngā taha e rua ki te -1.
-2y+39=9
Whakaurua te 39 mō x ki -2y+x=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-2y=-30
Me tango 39 mai i ngā taha e rua o te whārite.
y=15
Whakawehea ngā taha e rua ki te -2.
y=15,x=39
Kua oti te pūnaha te whakatau.