Whakaoti mō y, x
x=2
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
3y-6x=-3
Whakaarohia te whārite tuatahi. Tangohia te 6x mai i ngā taha e rua.
2x+y=7
Whakaarohia te whārite tuarua. Me tāpiri te y ki ngā taha e rua.
3y-6x=-3,y+2x=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3y-6x=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
3y=6x-3
Me tāpiri 6x ki ngā taha e rua o te whārite.
y=\frac{1}{3}\left(6x-3\right)
Whakawehea ngā taha e rua ki te 3.
y=2x-1
Whakareatia \frac{1}{3} ki te 6x-3.
2x-1+2x=7
Whakakapia te 2x-1 mō te y ki tērā atu whārite, y+2x=7.
4x-1=7
Tāpiri 2x ki te 2x.
4x=8
Me tāpiri 1 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 4.
y=2\times 2-1
Whakaurua te 2 mō x ki y=2x-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=4-1
Whakareatia 2 ki te 2.
y=3
Tāpiri -1 ki te 4.
y=3,x=2
Kua oti te pūnaha te whakatau.
3y-6x=-3
Whakaarohia te whārite tuatahi. Tangohia te 6x mai i ngā taha e rua.
2x+y=7
Whakaarohia te whārite tuarua. Me tāpiri te y ki ngā taha e rua.
3y-6x=-3,y+2x=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-6\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}3&-6\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-6\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-6\right)}&-\frac{-6}{3\times 2-\left(-6\right)}\\-\frac{1}{3\times 2-\left(-6\right)}&\frac{3}{3\times 2-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-3\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{2}\\-\frac{1}{12}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-3\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\left(-3\right)+\frac{1}{2}\times 7\\-\frac{1}{12}\left(-3\right)+\frac{1}{4}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
y=3,x=2
Tangohia ngā huānga poukapa y me x.
3y-6x=-3
Whakaarohia te whārite tuatahi. Tangohia te 6x mai i ngā taha e rua.
2x+y=7
Whakaarohia te whārite tuarua. Me tāpiri te y ki ngā taha e rua.
3y-6x=-3,y+2x=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3y-6x=-3,3y+3\times 2x=3\times 7
Kia ōrite ai a 3y me y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3y-6x=-3,3y+6x=21
Whakarūnātia.
3y-3y-6x-6x=-3-21
Me tango 3y+6x=21 mai i 3y-6x=-3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6x-6x=-3-21
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-12x=-3-21
Tāpiri -6x ki te -6x.
-12x=-24
Tāpiri -3 ki te -21.
x=2
Whakawehea ngā taha e rua ki te -12.
y+2\times 2=7
Whakaurua te 2 mō x ki y+2x=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y+4=7
Whakareatia 2 ki te 2.
y=3
Me tango 4 mai i ngā taha e rua o te whārite.
y=3,x=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}