Whakaoti mō x, y, z
x=\frac{N-14}{4}
y=\frac{N+6}{4}
z=N+1
Tohaina
Kua tāruatia ki te papatopenga
z=3y+x
Me whakaoti te 3y+x=z mō z.
3y+x=N+1
Whakakapia te 3y+x mō te z i te whārite z=N+1.
y=\frac{1}{3}-\frac{1}{3}x+\frac{1}{3}N x=y-5
Me whakaoti te whārite tuarua mō y me te whārite tuatoru mō x.
x=\frac{1}{3}-\frac{1}{3}x+\frac{1}{3}N-5
Whakakapia te \frac{1}{3}-\frac{1}{3}x+\frac{1}{3}N mō te y i te whārite x=y-5.
x=-\frac{7}{2}+\frac{1}{4}N
Me whakaoti te x=\frac{1}{3}-\frac{1}{3}x+\frac{1}{3}N-5 mō x.
y=\frac{1}{3}-\frac{1}{3}\left(-\frac{7}{2}+\frac{1}{4}N\right)+\frac{1}{3}N
Whakakapia te -\frac{7}{2}+\frac{1}{4}N mō te x i te whārite y=\frac{1}{3}-\frac{1}{3}x+\frac{1}{3}N.
y=\frac{3}{2}+\frac{1}{4}N
Tātaitia te y i te y=\frac{1}{3}-\frac{1}{3}\left(-\frac{7}{2}+\frac{1}{4}N\right)+\frac{1}{3}N.
z=3\left(\frac{3}{2}+\frac{1}{4}N\right)-\frac{7}{2}+\frac{1}{4}N
Whakakapia te \frac{3}{2}+\frac{1}{4}N mō te y me te -\frac{7}{2}+\frac{1}{4}N mō x i te whārite z=3y+x.
z=1+N
Tātaitia te z i te z=3\left(\frac{3}{2}+\frac{1}{4}N\right)-\frac{7}{2}+\frac{1}{4}N.
x=-\frac{7}{2}+\frac{1}{4}N y=\frac{3}{2}+\frac{1}{4}N z=1+N
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}