Whakaoti mō y, x
x=75
y=-25
Graph
Tohaina
Kua tāruatia ki te papatopenga
3y+2x=75,y+x=50
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3y+2x=75
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
3y=-2x+75
Me tango 2x mai i ngā taha e rua o te whārite.
y=\frac{1}{3}\left(-2x+75\right)
Whakawehea ngā taha e rua ki te 3.
y=-\frac{2}{3}x+25
Whakareatia \frac{1}{3} ki te -2x+75.
-\frac{2}{3}x+25+x=50
Whakakapia te -\frac{2x}{3}+25 mō te y ki tērā atu whārite, y+x=50.
\frac{1}{3}x+25=50
Tāpiri -\frac{2x}{3} ki te x.
\frac{1}{3}x=25
Me tango 25 mai i ngā taha e rua o te whārite.
x=75
Me whakarea ngā taha e rua ki te 3.
y=-\frac{2}{3}\times 75+25
Whakaurua te 75 mō x ki y=-\frac{2}{3}x+25. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-50+25
Whakareatia -\frac{2}{3} ki te 75.
y=-25
Tāpiri 25 ki te -50.
y=-25,x=75
Kua oti te pūnaha te whakatau.
3y+2x=75,y+x=50
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&2\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}75\\50\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}3&2\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}75\\50\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}75\\50\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}75\\50\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2}&-\frac{2}{3-2}\\-\frac{1}{3-2}&\frac{3}{3-2}\end{matrix}\right)\left(\begin{matrix}75\\50\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1&-2\\-1&3\end{matrix}\right)\left(\begin{matrix}75\\50\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}75-2\times 50\\-75+3\times 50\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-25\\75\end{matrix}\right)
Mahia ngā tātaitanga.
y=-25,x=75
Tangohia ngā huānga poukapa y me x.
3y+2x=75,y+x=50
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3y+2x=75,3y+3x=3\times 50
Kia ōrite ai a 3y me y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3y+2x=75,3y+3x=150
Whakarūnātia.
3y-3y+2x-3x=75-150
Me tango 3y+3x=150 mai i 3y+2x=75 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2x-3x=75-150
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-x=75-150
Tāpiri 2x ki te -3x.
-x=-75
Tāpiri 75 ki te -150.
x=75
Whakawehea ngā taha e rua ki te -1.
y+75=50
Whakaurua te 75 mō x ki y+x=50. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-25
Me tango 75 mai i ngā taha e rua o te whārite.
y=-25,x=75
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}