Whakaoti mō x, y
x=2
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-y-2=0,2x+y-8=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-y-2=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x-y=2
Me tāpiri 2 ki ngā taha e rua o te whārite.
3x=y+2
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(y+2\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}y+\frac{2}{3}
Whakareatia \frac{1}{3} ki te y+2.
2\left(\frac{1}{3}y+\frac{2}{3}\right)+y-8=0
Whakakapia te \frac{2+y}{3} mō te x ki tērā atu whārite, 2x+y-8=0.
\frac{2}{3}y+\frac{4}{3}+y-8=0
Whakareatia 2 ki te \frac{2+y}{3}.
\frac{5}{3}y+\frac{4}{3}-8=0
Tāpiri \frac{2y}{3} ki te y.
\frac{5}{3}y-\frac{20}{3}=0
Tāpiri \frac{4}{3} ki te -8.
\frac{5}{3}y=\frac{20}{3}
Me tāpiri \frac{20}{3} ki ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{3}\times 4+\frac{2}{3}
Whakaurua te 4 mō y ki x=\frac{1}{3}y+\frac{2}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4+2}{3}
Whakareatia \frac{1}{3} ki te 4.
x=2
Tāpiri \frac{2}{3} ki te \frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=4
Kua oti te pūnaha te whakatau.
3x-y-2=0,2x+y-8=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\2&1\end{matrix}\right))\left(\begin{matrix}3&-1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&1\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&1\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&1\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\right)}&-\frac{-1}{3-\left(-2\right)}\\-\frac{2}{3-\left(-2\right)}&\frac{3}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{2}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 2+\frac{1}{5}\times 8\\-\frac{2}{5}\times 2+\frac{3}{5}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=4
Tangohia ngā huānga poukapa x me y.
3x-y-2=0,2x+y-8=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\left(-1\right)y+2\left(-2\right)=0,3\times 2x+3y+3\left(-8\right)=0
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x-2y-4=0,6x+3y-24=0
Whakarūnātia.
6x-6x-2y-3y-4+24=0
Me tango 6x+3y-24=0 mai i 6x-2y-4=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-3y-4+24=0
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y-4+24=0
Tāpiri -2y ki te -3y.
-5y+20=0
Tāpiri -4 ki te 24.
-5y=-20
Me tango 20 mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te -5.
2x+4-8=0
Whakaurua te 4 mō y ki 2x+y-8=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-4=0
Tāpiri 4 ki te -8.
2x=4
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 2.
x=2,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}