Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-y=3,7x+2y=20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-y=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=y+3
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(y+3\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}y+1
Whakareatia \frac{1}{3} ki te y+3.
7\left(\frac{1}{3}y+1\right)+2y=20
Whakakapia te \frac{y}{3}+1 mō te x ki tērā atu whārite, 7x+2y=20.
\frac{7}{3}y+7+2y=20
Whakareatia 7 ki te \frac{y}{3}+1.
\frac{13}{3}y+7=20
Tāpiri \frac{7y}{3} ki te 2y.
\frac{13}{3}y=13
Me tango 7 mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{3}\times 3+1
Whakaurua te 3 mō y ki x=\frac{1}{3}y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1+1
Whakareatia \frac{1}{3} ki te 3.
x=2
Tāpiri 1 ki te 1.
x=2,y=3
Kua oti te pūnaha te whakatau.
3x-y=3,7x+2y=20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\7&2\end{matrix}\right))\left(\begin{matrix}3&-1\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\7&2\end{matrix}\right))\left(\begin{matrix}3\\20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\7&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\7&2\end{matrix}\right))\left(\begin{matrix}3\\20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\7&2\end{matrix}\right))\left(\begin{matrix}3\\20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-7\right)}&-\frac{-1}{3\times 2-\left(-7\right)}\\-\frac{7}{3\times 2-\left(-7\right)}&\frac{3}{3\times 2-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}3\\20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{1}{13}\\-\frac{7}{13}&\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}3\\20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 3+\frac{1}{13}\times 20\\-\frac{7}{13}\times 3+\frac{3}{13}\times 20\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=3
Tangohia ngā huānga poukapa x me y.
3x-y=3,7x+2y=20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 3x+7\left(-1\right)y=7\times 3,3\times 7x+3\times 2y=3\times 20
Kia ōrite ai a 3x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
21x-7y=21,21x+6y=60
Whakarūnātia.
21x-21x-7y-6y=21-60
Me tango 21x+6y=60 mai i 21x-7y=21 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-7y-6y=21-60
Tāpiri 21x ki te -21x. Ka whakakore atu ngā kupu 21x me -21x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-13y=21-60
Tāpiri -7y ki te -6y.
-13y=-39
Tāpiri 21 ki te -60.
y=3
Whakawehea ngā taha e rua ki te -13.
7x+2\times 3=20
Whakaurua te 3 mō y ki 7x+2y=20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x+6=20
Whakareatia 2 ki te 3.
7x=14
Me tango 6 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 7.
x=2,y=3
Kua oti te pūnaha te whakatau.