Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-y=-9,2x+3y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-y=-9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=y-9
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(y-9\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}y-3
Whakareatia \frac{1}{3} ki te y-9.
2\left(\frac{1}{3}y-3\right)+3y=5
Whakakapia te \frac{y}{3}-3 mō te x ki tērā atu whārite, 2x+3y=5.
\frac{2}{3}y-6+3y=5
Whakareatia 2 ki te \frac{y}{3}-3.
\frac{11}{3}y-6=5
Tāpiri \frac{2y}{3} ki te 3y.
\frac{11}{3}y=11
Me tāpiri 6 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{3}\times 3-3
Whakaurua te 3 mō y ki x=\frac{1}{3}y-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1-3
Whakareatia \frac{1}{3} ki te 3.
x=-2
Tāpiri -3 ki te 1.
x=-2,y=3
Kua oti te pūnaha te whakatau.
3x-y=-9,2x+3y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\2&3\end{matrix}\right))\left(\begin{matrix}3&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&3\end{matrix}\right))\left(\begin{matrix}-9\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&3\end{matrix}\right))\left(\begin{matrix}-9\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&3\end{matrix}\right))\left(\begin{matrix}-9\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-2\right)}&-\frac{-1}{3\times 3-\left(-2\right)}\\-\frac{2}{3\times 3-\left(-2\right)}&\frac{3}{3\times 3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-9\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&\frac{1}{11}\\-\frac{2}{11}&\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}-9\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\left(-9\right)+\frac{1}{11}\times 5\\-\frac{2}{11}\left(-9\right)+\frac{3}{11}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=3
Tangohia ngā huānga poukapa x me y.
3x-y=-9,2x+3y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\left(-1\right)y=2\left(-9\right),3\times 2x+3\times 3y=3\times 5
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x-2y=-18,6x+9y=15
Whakarūnātia.
6x-6x-2y-9y=-18-15
Me tango 6x+9y=15 mai i 6x-2y=-18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-9y=-18-15
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-11y=-18-15
Tāpiri -2y ki te -9y.
-11y=-33
Tāpiri -18 ki te -15.
y=3
Whakawehea ngā taha e rua ki te -11.
2x+3\times 3=5
Whakaurua te 3 mō y ki 2x+3y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+9=5
Whakareatia 3 ki te 3.
2x=-4
Me tango 9 mai i ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te 2.
x=-2,y=3
Kua oti te pūnaha te whakatau.