Whakaoti mō x, y
x=-3
y=-7
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-y+2=0,5x-2y+1=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-y+2=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x-y=-2
Me tango 2 mai i ngā taha e rua o te whārite.
3x=y-2
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(y-2\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}y-\frac{2}{3}
Whakareatia \frac{1}{3} ki te y-2.
5\left(\frac{1}{3}y-\frac{2}{3}\right)-2y+1=0
Whakakapia te \frac{-2+y}{3} mō te x ki tērā atu whārite, 5x-2y+1=0.
\frac{5}{3}y-\frac{10}{3}-2y+1=0
Whakareatia 5 ki te \frac{-2+y}{3}.
-\frac{1}{3}y-\frac{10}{3}+1=0
Tāpiri \frac{5y}{3} ki te -2y.
-\frac{1}{3}y-\frac{7}{3}=0
Tāpiri -\frac{10}{3} ki te 1.
-\frac{1}{3}y=\frac{7}{3}
Me tāpiri \frac{7}{3} ki ngā taha e rua o te whārite.
y=-7
Me whakarea ngā taha e rua ki te -3.
x=\frac{1}{3}\left(-7\right)-\frac{2}{3}
Whakaurua te -7 mō y ki x=\frac{1}{3}y-\frac{2}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-7-2}{3}
Whakareatia \frac{1}{3} ki te -7.
x=-3
Tāpiri -\frac{2}{3} ki te -\frac{7}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-3,y=-7
Kua oti te pūnaha te whakatau.
3x-y+2=0,5x-2y+1=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\5&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-5\right)}&-\frac{-1}{3\left(-2\right)-\left(-5\right)}\\-\frac{5}{3\left(-2\right)-\left(-5\right)}&\frac{3}{3\left(-2\right)-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\5&-3\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\left(-2\right)-\left(-1\right)\\5\left(-2\right)-3\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-7\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=-7
Tangohia ngā huānga poukapa x me y.
3x-y+2=0,5x-2y+1=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 3x+5\left(-1\right)y+5\times 2=0,3\times 5x+3\left(-2\right)y+3=0
Kia ōrite ai a 3x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
15x-5y+10=0,15x-6y+3=0
Whakarūnātia.
15x-15x-5y+6y+10-3=0
Me tango 15x-6y+3=0 mai i 15x-5y+10=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-5y+6y+10-3=0
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y+10-3=0
Tāpiri -5y ki te 6y.
y+7=0
Tāpiri 10 ki te -3.
y=-7
Me tango 7 mai i ngā taha e rua o te whārite.
5x-2\left(-7\right)+1=0
Whakaurua te -7 mō y ki 5x-2y+1=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x+14+1=0
Whakareatia -2 ki te -7.
5x+15=0
Tāpiri 14 ki te 1.
5x=-15
Me tango 15 mai i ngā taha e rua o te whārite.
x=-3
Whakawehea ngā taha e rua ki te 5.
x=-3,y=-7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}