Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-9-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
3x-y=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
9y+3-x=0
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
9y-x=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3x-y=9,-x+9y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=y+9
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(y+9\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}y+3
Whakareatia \frac{1}{3} ki te y+9.
-\left(\frac{1}{3}y+3\right)+9y=-3
Whakakapia te \frac{y}{3}+3 mō te x ki tērā atu whārite, -x+9y=-3.
-\frac{1}{3}y-3+9y=-3
Whakareatia -1 ki te \frac{y}{3}+3.
\frac{26}{3}y-3=-3
Tāpiri -\frac{y}{3} ki te 9y.
\frac{26}{3}y=0
Me tāpiri 3 ki ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua o te whārite ki te \frac{26}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=3
Whakaurua te 0 mō y ki x=\frac{1}{3}y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3,y=0
Kua oti te pūnaha te whakatau.
3x-9-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
3x-y=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
9y+3-x=0
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
9y-x=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3x-y=9,-x+9y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\-1&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}3&-1\\-1&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}9\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\-1&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}9\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&9\end{matrix}\right))\left(\begin{matrix}9\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{3\times 9-\left(-\left(-1\right)\right)}&-\frac{-1}{3\times 9-\left(-\left(-1\right)\right)}\\-\frac{-1}{3\times 9-\left(-\left(-1\right)\right)}&\frac{3}{3\times 9-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}9\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{26}&\frac{1}{26}\\\frac{1}{26}&\frac{3}{26}\end{matrix}\right)\left(\begin{matrix}9\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{26}\times 9+\frac{1}{26}\left(-3\right)\\\frac{1}{26}\times 9+\frac{3}{26}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=0
Tangohia ngā huānga poukapa x me y.
3x-9-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
3x-y=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
9y+3-x=0
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
9y-x=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3x-y=9,-x+9y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3x-\left(-y\right)=-9,3\left(-1\right)x+3\times 9y=3\left(-3\right)
Kia ōrite ai a 3x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-3x+y=-9,-3x+27y=-9
Whakarūnātia.
-3x+3x+y-27y=-9+9
Me tango -3x+27y=-9 mai i -3x+y=-9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-27y=-9+9
Tāpiri -3x ki te 3x. Ka whakakore atu ngā kupu -3x me 3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-26y=-9+9
Tāpiri y ki te -27y.
-26y=0
Tāpiri -9 ki te 9.
y=0
Whakawehea ngā taha e rua ki te -26.
-x=-3
Whakaurua te 0 mō y ki -x+9y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Whakawehea ngā taha e rua ki te -1.
x=3,y=0
Kua oti te pūnaha te whakatau.