Whakaoti mō x, y
x=3
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-7y=2,-5x+2y=-13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-7y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=7y+2
Me tāpiri 7y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(7y+2\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{7}{3}y+\frac{2}{3}
Whakareatia \frac{1}{3} ki te 7y+2.
-5\left(\frac{7}{3}y+\frac{2}{3}\right)+2y=-13
Whakakapia te \frac{7y+2}{3} mō te x ki tērā atu whārite, -5x+2y=-13.
-\frac{35}{3}y-\frac{10}{3}+2y=-13
Whakareatia -5 ki te \frac{7y+2}{3}.
-\frac{29}{3}y-\frac{10}{3}=-13
Tāpiri -\frac{35y}{3} ki te 2y.
-\frac{29}{3}y=-\frac{29}{3}
Me tāpiri \frac{10}{3} ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{29}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{7+2}{3}
Whakaurua te 1 mō y ki x=\frac{7}{3}y+\frac{2}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Tāpiri \frac{2}{3} ki te \frac{7}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=1
Kua oti te pūnaha te whakatau.
3x-7y=2,-5x+2y=-13
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-13\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}2\\-13\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-7\\-5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}2\\-13\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\-5&2\end{matrix}\right))\left(\begin{matrix}2\\-13\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-7\left(-5\right)\right)}&-\frac{-7}{3\times 2-\left(-7\left(-5\right)\right)}\\-\frac{-5}{3\times 2-\left(-7\left(-5\right)\right)}&\frac{3}{3\times 2-\left(-7\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}2\\-13\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{29}&-\frac{7}{29}\\-\frac{5}{29}&-\frac{3}{29}\end{matrix}\right)\left(\begin{matrix}2\\-13\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{29}\times 2-\frac{7}{29}\left(-13\right)\\-\frac{5}{29}\times 2-\frac{3}{29}\left(-13\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=1
Tangohia ngā huānga poukapa x me y.
3x-7y=2,-5x+2y=-13
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\times 3x-5\left(-7\right)y=-5\times 2,3\left(-5\right)x+3\times 2y=3\left(-13\right)
Kia ōrite ai a 3x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-15x+35y=-10,-15x+6y=-39
Whakarūnātia.
-15x+15x+35y-6y=-10+39
Me tango -15x+6y=-39 mai i -15x+35y=-10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
35y-6y=-10+39
Tāpiri -15x ki te 15x. Ka whakakore atu ngā kupu -15x me 15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
29y=-10+39
Tāpiri 35y ki te -6y.
29y=29
Tāpiri -10 ki te 39.
y=1
Whakawehea ngā taha e rua ki te 29.
-5x+2=-13
Whakaurua te 1 mō y ki -5x+2y=-13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x=-15
Me tango 2 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te -5.
x=3,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}