Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-7y=-19,2x-9y=-17
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-7y=-19
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=7y-19
Me tāpiri 7y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(7y-19\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{7}{3}y-\frac{19}{3}
Whakareatia \frac{1}{3} ki te 7y-19.
2\left(\frac{7}{3}y-\frac{19}{3}\right)-9y=-17
Whakakapia te \frac{7y-19}{3} mō te x ki tērā atu whārite, 2x-9y=-17.
\frac{14}{3}y-\frac{38}{3}-9y=-17
Whakareatia 2 ki te \frac{7y-19}{3}.
-\frac{13}{3}y-\frac{38}{3}=-17
Tāpiri \frac{14y}{3} ki te -9y.
-\frac{13}{3}y=-\frac{13}{3}
Me tāpiri \frac{38}{3} ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{13}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{7-19}{3}
Whakaurua te 1 mō y ki x=\frac{7}{3}y-\frac{19}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-4
Tāpiri -\frac{19}{3} ki te \frac{7}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-4,y=1
Kua oti te pūnaha te whakatau.
3x-7y=-19,2x-9y=-17
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-7\\2&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-19\\-17\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-7\\2&-9\end{matrix}\right))\left(\begin{matrix}3&-7\\2&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\2&-9\end{matrix}\right))\left(\begin{matrix}-19\\-17\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-7\\2&-9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\2&-9\end{matrix}\right))\left(\begin{matrix}-19\\-17\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\2&-9\end{matrix}\right))\left(\begin{matrix}-19\\-17\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{3\left(-9\right)-\left(-7\times 2\right)}&-\frac{-7}{3\left(-9\right)-\left(-7\times 2\right)}\\-\frac{2}{3\left(-9\right)-\left(-7\times 2\right)}&\frac{3}{3\left(-9\right)-\left(-7\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-19\\-17\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{13}&-\frac{7}{13}\\\frac{2}{13}&-\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}-19\\-17\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{13}\left(-19\right)-\frac{7}{13}\left(-17\right)\\\frac{2}{13}\left(-19\right)-\frac{3}{13}\left(-17\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=1
Tangohia ngā huānga poukapa x me y.
3x-7y=-19,2x-9y=-17
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\left(-7\right)y=2\left(-19\right),3\times 2x+3\left(-9\right)y=3\left(-17\right)
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x-14y=-38,6x-27y=-51
Whakarūnātia.
6x-6x-14y+27y=-38+51
Me tango 6x-27y=-51 mai i 6x-14y=-38 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-14y+27y=-38+51
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
13y=-38+51
Tāpiri -14y ki te 27y.
13y=13
Tāpiri -38 ki te 51.
y=1
Whakawehea ngā taha e rua ki te 13.
2x-9=-17
Whakaurua te 1 mō y ki 2x-9y=-17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=-8
Me tāpiri 9 ki ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te 2.
x=-4,y=1
Kua oti te pūnaha te whakatau.