Whakaoti mō x, p
x = \frac{11}{3} = 3\frac{2}{3} \approx 3.666666667
p = \frac{10}{9} = 1\frac{1}{9} \approx 1.111111111
Tohaina
Kua tāruatia ki te papatopenga
3x-7=15-3x
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 5-x.
3x-7+3x=15
Me tāpiri te 3x ki ngā taha e rua.
6x-7=15
Pahekotia te 3x me 3x, ka 6x.
6x=15+7
Me tāpiri te 7 ki ngā taha e rua.
6x=22
Tāpirihia te 15 ki te 7, ka 22.
x=\frac{22}{6}
Whakawehea ngā taha e rua ki te 6.
x=\frac{11}{3}
Whakahekea te hautanga \frac{22}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
6p-3=5-\left(3p-2\right)
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2p-1.
6p-3=5-3p+2
Hei kimi i te tauaro o 3p-2, kimihia te tauaro o ia taurangi.
6p-3=7-3p
Tāpirihia te 5 ki te 2, ka 7.
6p-3+3p=7
Me tāpiri te 3p ki ngā taha e rua.
9p-3=7
Pahekotia te 6p me 3p, ka 9p.
9p=7+3
Me tāpiri te 3 ki ngā taha e rua.
9p=10
Tāpirihia te 7 ki te 3, ka 10.
p=\frac{10}{9}
Whakawehea ngā taha e rua ki te 9.
x=\frac{11}{3} p=\frac{10}{9}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}