Whakaoti mō x, y
x=3
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+8x=24
Whakaarohia te whārite tuarua. Me tāpiri te 8x ki ngā taha e rua.
3x-6y=9,8x+y=24
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-6y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=6y+9
Me tāpiri 6y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(6y+9\right)
Whakawehea ngā taha e rua ki te 3.
x=2y+3
Whakareatia \frac{1}{3} ki te 6y+9.
8\left(2y+3\right)+y=24
Whakakapia te 2y+3 mō te x ki tērā atu whārite, 8x+y=24.
16y+24+y=24
Whakareatia 8 ki te 2y+3.
17y+24=24
Tāpiri 16y ki te y.
17y=0
Me tango 24 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te 17.
x=3
Whakaurua te 0 mō y ki x=2y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3,y=0
Kua oti te pūnaha te whakatau.
y+8x=24
Whakaarohia te whārite tuarua. Me tāpiri te 8x ki ngā taha e rua.
3x-6y=9,8x+y=24
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-6\\8&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-6\\8&1\end{matrix}\right))\left(\begin{matrix}3&-6\\8&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\8&1\end{matrix}\right))\left(\begin{matrix}9\\24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-6\\8&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\8&1\end{matrix}\right))\left(\begin{matrix}9\\24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\8&1\end{matrix}\right))\left(\begin{matrix}9\\24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-6\times 8\right)}&-\frac{-6}{3-\left(-6\times 8\right)}\\-\frac{8}{3-\left(-6\times 8\right)}&\frac{3}{3-\left(-6\times 8\right)}\end{matrix}\right)\left(\begin{matrix}9\\24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{51}&\frac{2}{17}\\-\frac{8}{51}&\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}9\\24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{51}\times 9+\frac{2}{17}\times 24\\-\frac{8}{51}\times 9+\frac{1}{17}\times 24\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=0
Tangohia ngā huānga poukapa x me y.
y+8x=24
Whakaarohia te whārite tuarua. Me tāpiri te 8x ki ngā taha e rua.
3x-6y=9,8x+y=24
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\times 3x+8\left(-6\right)y=8\times 9,3\times 8x+3y=3\times 24
Kia ōrite ai a 3x me 8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
24x-48y=72,24x+3y=72
Whakarūnātia.
24x-24x-48y-3y=72-72
Me tango 24x+3y=72 mai i 24x-48y=72 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-48y-3y=72-72
Tāpiri 24x ki te -24x. Ka whakakore atu ngā kupu 24x me -24x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-51y=72-72
Tāpiri -48y ki te -3y.
-51y=0
Tāpiri 72 ki te -72.
y=0
Whakawehea ngā taha e rua ki te -51.
8x=24
Whakaurua te 0 mō y ki 8x+y=24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Whakawehea ngā taha e rua ki te 8.
x=3,y=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}