Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-5y=a,6x-2y=-6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-5y=a
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=5y+a
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(5y+a\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{5}{3}y+\frac{a}{3}
Whakareatia \frac{1}{3} ki te 5y+a.
6\left(\frac{5}{3}y+\frac{a}{3}\right)-2y=-6
Whakakapia te \frac{5y+a}{3} mō te x ki tērā atu whārite, 6x-2y=-6.
10y+2a-2y=-6
Whakareatia 6 ki te \frac{5y+a}{3}.
8y+2a=-6
Tāpiri 10y ki te -2y.
8y=-2a-6
Me tango 2a mai i ngā taha e rua o te whārite.
y=\frac{-a-3}{4}
Whakawehea ngā taha e rua ki te 8.
x=\frac{5}{3}\times \frac{-a-3}{4}+\frac{a}{3}
Whakaurua te \frac{-3-a}{4} mō y ki x=\frac{5}{3}y+\frac{a}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{5a}{12}-\frac{5}{4}+\frac{a}{3}
Whakareatia \frac{5}{3} ki te \frac{-3-a}{4}.
x=-\frac{a}{12}-\frac{5}{4}
Tāpiri \frac{a}{3} ki te -\frac{5}{4}-\frac{5a}{12}.
x=-\frac{a}{12}-\frac{5}{4},y=\frac{-a-3}{4}
Kua oti te pūnaha te whakatau.
3x-5y=a,6x-2y=-6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-5\\6&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-5\\6&-2\end{matrix}\right))\left(\begin{matrix}3&-5\\6&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\6&-2\end{matrix}\right))\left(\begin{matrix}a\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-5\\6&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\6&-2\end{matrix}\right))\left(\begin{matrix}a\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\6&-2\end{matrix}\right))\left(\begin{matrix}a\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-5\times 6\right)}&-\frac{-5}{3\left(-2\right)-\left(-5\times 6\right)}\\-\frac{6}{3\left(-2\right)-\left(-5\times 6\right)}&\frac{3}{3\left(-2\right)-\left(-5\times 6\right)}\end{matrix}\right)\left(\begin{matrix}a\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}&\frac{5}{24}\\-\frac{1}{4}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}a\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}a+\frac{5}{24}\left(-6\right)\\-\frac{1}{4}a+\frac{1}{8}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{a}{12}-\frac{5}{4}\\\frac{-a-3}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{a}{12}-\frac{5}{4},y=\frac{-a-3}{4}
Tangohia ngā huānga poukapa x me y.
3x-5y=a,6x-2y=-6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 3x+6\left(-5\right)y=6a,3\times 6x+3\left(-2\right)y=3\left(-6\right)
Kia ōrite ai a 3x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
18x-30y=6a,18x-6y=-18
Whakarūnātia.
18x-18x-30y+6y=6a+18
Me tango 18x-6y=-18 mai i 18x-30y=6a mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-30y+6y=6a+18
Tāpiri 18x ki te -18x. Ka whakakore atu ngā kupu 18x me -18x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-24y=6a+18
Tāpiri -30y ki te 6y.
y=\frac{-a-3}{4}
Whakawehea ngā taha e rua ki te -24.
6x-2\times \frac{-a-3}{4}=-6
Whakaurua te \frac{-3-a}{4} mō y ki 6x-2y=-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x+\frac{a+3}{2}=-6
Whakareatia -2 ki te \frac{-3-a}{4}.
6x=\frac{-a-15}{2}
Me tango \frac{3+a}{2} mai i ngā taha e rua o te whārite.
x=-\frac{a}{12}-\frac{5}{4}
Whakawehea ngā taha e rua ki te 6.
x=-\frac{a}{12}-\frac{5}{4},y=\frac{-a-3}{4}
Kua oti te pūnaha te whakatau.