Whakaoti mō x, y
x=-7
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-5y=-6,2x-3y=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-5y=-6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=5y-6
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(5y-6\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{5}{3}y-2
Whakareatia \frac{1}{3} ki te 5y-6.
2\left(\frac{5}{3}y-2\right)-3y=-5
Whakakapia te \frac{5y}{3}-2 mō te x ki tērā atu whārite, 2x-3y=-5.
\frac{10}{3}y-4-3y=-5
Whakareatia 2 ki te \frac{5y}{3}-2.
\frac{1}{3}y-4=-5
Tāpiri \frac{10y}{3} ki te -3y.
\frac{1}{3}y=-1
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=-3
Me whakarea ngā taha e rua ki te 3.
x=\frac{5}{3}\left(-3\right)-2
Whakaurua te -3 mō y ki x=\frac{5}{3}y-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-5-2
Whakareatia \frac{5}{3} ki te -3.
x=-7
Tāpiri -2 ki te -5.
x=-7,y=-3
Kua oti te pūnaha te whakatau.
3x-5y=-6,2x-3y=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-5\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-5\\2&-3\end{matrix}\right))\left(\begin{matrix}3&-5\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-5\\2&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&-3\end{matrix}\right))\left(\begin{matrix}-6\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-\left(-5\times 2\right)}&-\frac{-5}{3\left(-3\right)-\left(-5\times 2\right)}\\-\frac{2}{3\left(-3\right)-\left(-5\times 2\right)}&\frac{3}{3\left(-3\right)-\left(-5\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&5\\-2&3\end{matrix}\right)\left(\begin{matrix}-6\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\left(-6\right)+5\left(-5\right)\\-2\left(-6\right)+3\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-7,y=-3
Tangohia ngā huānga poukapa x me y.
3x-5y=-6,2x-3y=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\left(-5\right)y=2\left(-6\right),3\times 2x+3\left(-3\right)y=3\left(-5\right)
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x-10y=-12,6x-9y=-15
Whakarūnātia.
6x-6x-10y+9y=-12+15
Me tango 6x-9y=-15 mai i 6x-10y=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-10y+9y=-12+15
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=-12+15
Tāpiri -10y ki te 9y.
-y=3
Tāpiri -12 ki te 15.
y=-3
Whakawehea ngā taha e rua ki te -1.
2x-3\left(-3\right)=-5
Whakaurua te -3 mō y ki 2x-3y=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+9=-5
Whakareatia -3 ki te -3.
2x=-14
Me tango 9 mai i ngā taha e rua o te whārite.
x=-7
Whakawehea ngā taha e rua ki te 2.
x=-7,y=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}