Whakaoti mō x, y
x=9
y=9
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-5y=-18,3x-2y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-5y=-18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=5y-18
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(5y-18\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{5}{3}y-6
Whakareatia \frac{1}{3} ki te 5y-18.
3\left(\frac{5}{3}y-6\right)-2y=9
Whakakapia te \frac{5y}{3}-6 mō te x ki tērā atu whārite, 3x-2y=9.
5y-18-2y=9
Whakareatia 3 ki te \frac{5y}{3}-6.
3y-18=9
Tāpiri 5y ki te -2y.
3y=27
Me tāpiri 18 ki ngā taha e rua o te whārite.
y=9
Whakawehea ngā taha e rua ki te 3.
x=\frac{5}{3}\times 9-6
Whakaurua te 9 mō y ki x=\frac{5}{3}y-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=15-6
Whakareatia \frac{5}{3} ki te 9.
x=9
Tāpiri -6 ki te 15.
x=9,y=9
Kua oti te pūnaha te whakatau.
3x-5y=-18,3x-2y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-18\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}3&-5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}-18\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-5\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}-18\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}-18\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-5\times 3\right)}&-\frac{-5}{3\left(-2\right)-\left(-5\times 3\right)}\\-\frac{3}{3\left(-2\right)-\left(-5\times 3\right)}&\frac{3}{3\left(-2\right)-\left(-5\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-18\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{9}&\frac{5}{9}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-18\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{9}\left(-18\right)+\frac{5}{9}\times 9\\-\frac{1}{3}\left(-18\right)+\frac{1}{3}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\9\end{matrix}\right)
Mahia ngā tātaitanga.
x=9,y=9
Tangohia ngā huānga poukapa x me y.
3x-5y=-18,3x-2y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-3x-5y+2y=-18-9
Me tango 3x-2y=9 mai i 3x-5y=-18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-5y+2y=-18-9
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3y=-18-9
Tāpiri -5y ki te 2y.
-3y=-27
Tāpiri -18 ki te -9.
y=9
Whakawehea ngā taha e rua ki te -3.
3x-2\times 9=9
Whakaurua te 9 mō y ki 3x-2y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-18=9
Whakareatia -2 ki te 9.
3x=27
Me tāpiri 18 ki ngā taha e rua o te whārite.
x=9
Whakawehea ngā taha e rua ki te 3.
x=9,y=9
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}