Whakaoti mō x, y
x=3
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-5y=-16,2x+5y=31
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-5y=-16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=5y-16
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(5y-16\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{5}{3}y-\frac{16}{3}
Whakareatia \frac{1}{3} ki te 5y-16.
2\left(\frac{5}{3}y-\frac{16}{3}\right)+5y=31
Whakakapia te \frac{5y-16}{3} mō te x ki tērā atu whārite, 2x+5y=31.
\frac{10}{3}y-\frac{32}{3}+5y=31
Whakareatia 2 ki te \frac{5y-16}{3}.
\frac{25}{3}y-\frac{32}{3}=31
Tāpiri \frac{10y}{3} ki te 5y.
\frac{25}{3}y=\frac{125}{3}
Me tāpiri \frac{32}{3} ki ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua o te whārite ki te \frac{25}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{3}\times 5-\frac{16}{3}
Whakaurua te 5 mō y ki x=\frac{5}{3}y-\frac{16}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{25-16}{3}
Whakareatia \frac{5}{3} ki te 5.
x=3
Tāpiri -\frac{16}{3} ki te \frac{25}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=5
Kua oti te pūnaha te whakatau.
3x-5y=-16,2x+5y=31
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-5\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\31\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-5\\2&5\end{matrix}\right))\left(\begin{matrix}3&-5\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&5\end{matrix}\right))\left(\begin{matrix}-16\\31\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-5\\2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&5\end{matrix}\right))\left(\begin{matrix}-16\\31\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-5\\2&5\end{matrix}\right))\left(\begin{matrix}-16\\31\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-\left(-5\times 2\right)}&-\frac{-5}{3\times 5-\left(-5\times 2\right)}\\-\frac{2}{3\times 5-\left(-5\times 2\right)}&\frac{3}{3\times 5-\left(-5\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-16\\31\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{2}{25}&\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}-16\\31\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-16\right)+\frac{1}{5}\times 31\\-\frac{2}{25}\left(-16\right)+\frac{3}{25}\times 31\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=5
Tangohia ngā huānga poukapa x me y.
3x-5y=-16,2x+5y=31
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\left(-5\right)y=2\left(-16\right),3\times 2x+3\times 5y=3\times 31
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x-10y=-32,6x+15y=93
Whakarūnātia.
6x-6x-10y-15y=-32-93
Me tango 6x+15y=93 mai i 6x-10y=-32 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-10y-15y=-32-93
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-25y=-32-93
Tāpiri -10y ki te -15y.
-25y=-125
Tāpiri -32 ki te -93.
y=5
Whakawehea ngā taha e rua ki te -25.
2x+5\times 5=31
Whakaurua te 5 mō y ki 2x+5y=31. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+25=31
Whakareatia 5 ki te 5.
2x=6
Me tango 25 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 2.
x=3,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}