Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-4y=2,-5x+2y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-4y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=4y+2
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(4y+2\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{4}{3}y+\frac{2}{3}
Whakareatia \frac{1}{3} ki te 4y+2.
-5\left(\frac{4}{3}y+\frac{2}{3}\right)+2y=6
Whakakapia te \frac{4y+2}{3} mō te x ki tērā atu whārite, -5x+2y=6.
-\frac{20}{3}y-\frac{10}{3}+2y=6
Whakareatia -5 ki te \frac{4y+2}{3}.
-\frac{14}{3}y-\frac{10}{3}=6
Tāpiri -\frac{20y}{3} ki te 2y.
-\frac{14}{3}y=\frac{28}{3}
Me tāpiri \frac{10}{3} ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te -\frac{14}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{4}{3}\left(-2\right)+\frac{2}{3}
Whakaurua te -2 mō y ki x=\frac{4}{3}y+\frac{2}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-8+2}{3}
Whakareatia \frac{4}{3} ki te -2.
x=-2
Tāpiri \frac{2}{3} ki te -\frac{8}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-2,y=-2
Kua oti te pūnaha te whakatau.
3x-4y=2,-5x+2y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-4\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-4\\-5&2\end{matrix}\right))\left(\begin{matrix}3&-4\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\-5&2\end{matrix}\right))\left(\begin{matrix}2\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-4\\-5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\-5&2\end{matrix}\right))\left(\begin{matrix}2\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\-5&2\end{matrix}\right))\left(\begin{matrix}2\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-4\left(-5\right)\right)}&-\frac{-4}{3\times 2-\left(-4\left(-5\right)\right)}\\-\frac{-5}{3\times 2-\left(-4\left(-5\right)\right)}&\frac{3}{3\times 2-\left(-4\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}2\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&-\frac{2}{7}\\-\frac{5}{14}&-\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}2\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\times 2-\frac{2}{7}\times 6\\-\frac{5}{14}\times 2-\frac{3}{14}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=-2
Tangohia ngā huānga poukapa x me y.
3x-4y=2,-5x+2y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\times 3x-5\left(-4\right)y=-5\times 2,3\left(-5\right)x+3\times 2y=3\times 6
Kia ōrite ai a 3x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
-15x+20y=-10,-15x+6y=18
Whakarūnātia.
-15x+15x+20y-6y=-10-18
Me tango -15x+6y=18 mai i -15x+20y=-10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20y-6y=-10-18
Tāpiri -15x ki te 15x. Ka whakakore atu ngā kupu -15x me 15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
14y=-10-18
Tāpiri 20y ki te -6y.
14y=-28
Tāpiri -10 ki te -18.
y=-2
Whakawehea ngā taha e rua ki te 14.
-5x+2\left(-2\right)=6
Whakaurua te -2 mō y ki -5x+2y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x-4=6
Whakareatia 2 ki te -2.
-5x=10
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te -5.
x=-2,y=-2
Kua oti te pūnaha te whakatau.