Whakaoti mō x, y
x=0
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+3x=-3
Whakaarohia te whārite tuarua. Me tāpiri te 3x ki ngā taha e rua.
3x-4y=12,3x+y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-4y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=4y+12
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(4y+12\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{4}{3}y+4
Whakareatia \frac{1}{3} ki te 12+4y.
3\left(\frac{4}{3}y+4\right)+y=-3
Whakakapia te 4+\frac{4y}{3} mō te x ki tērā atu whārite, 3x+y=-3.
4y+12+y=-3
Whakareatia 3 ki te 4+\frac{4y}{3}.
5y+12=-3
Tāpiri 4y ki te y.
5y=-15
Me tango 12 mai i ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua ki te 5.
x=\frac{4}{3}\left(-3\right)+4
Whakaurua te -3 mō y ki x=\frac{4}{3}y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-4+4
Whakareatia \frac{4}{3} ki te -3.
x=0
Tāpiri 4 ki te -4.
x=0,y=-3
Kua oti te pūnaha te whakatau.
y+3x=-3
Whakaarohia te whārite tuarua. Me tāpiri te 3x ki ngā taha e rua.
3x-4y=12,3x+y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-4\\3&1\end{matrix}\right))\left(\begin{matrix}3&-4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-4\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-4\times 3\right)}&-\frac{-4}{3-\left(-4\times 3\right)}\\-\frac{3}{3-\left(-4\times 3\right)}&\frac{3}{3-\left(-4\times 3\right)}\end{matrix}\right)\left(\begin{matrix}12\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&\frac{4}{15}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}12\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\times 12+\frac{4}{15}\left(-3\right)\\-\frac{1}{5}\times 12+\frac{1}{5}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=-3
Tangohia ngā huānga poukapa x me y.
y+3x=-3
Whakaarohia te whārite tuarua. Me tāpiri te 3x ki ngā taha e rua.
3x-4y=12,3x+y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-3x-4y-y=12+3
Me tango 3x+y=-3 mai i 3x-4y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y-y=12+3
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=12+3
Tāpiri -4y ki te -y.
-5y=15
Tāpiri 12 ki te 3.
y=-3
Whakawehea ngā taha e rua ki te -5.
3x-3=-3
Whakaurua te -3 mō y ki 3x+y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=0
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 3.
x=0,y=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}