Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-4y=-6,2x+4y=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-4y=-6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=4y-6
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(4y-6\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{4}{3}y-2
Whakareatia \frac{1}{3} ki te 4y-6.
2\left(\frac{4}{3}y-2\right)+4y=16
Whakakapia te \frac{4y}{3}-2 mō te x ki tērā atu whārite, 2x+4y=16.
\frac{8}{3}y-4+4y=16
Whakareatia 2 ki te \frac{4y}{3}-2.
\frac{20}{3}y-4=16
Tāpiri \frac{8y}{3} ki te 4y.
\frac{20}{3}y=20
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te \frac{20}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{4}{3}\times 3-2
Whakaurua te 3 mō y ki x=\frac{4}{3}y-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=4-2
Whakareatia \frac{4}{3} ki te 3.
x=2
Tāpiri -2 ki te 4.
x=2,y=3
Kua oti te pūnaha te whakatau.
3x-4y=-6,2x+4y=16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-4\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}3&-4\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}-6\\16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-4\\2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}-6\\16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}-6\\16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-\left(-4\times 2\right)}&-\frac{-4}{3\times 4-\left(-4\times 2\right)}\\-\frac{2}{3\times 4-\left(-4\times 2\right)}&\frac{3}{3\times 4-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-6\\16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{1}{10}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}-6\\16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-6\right)+\frac{1}{5}\times 16\\-\frac{1}{10}\left(-6\right)+\frac{3}{20}\times 16\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=3
Tangohia ngā huānga poukapa x me y.
3x-4y=-6,2x+4y=16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\left(-4\right)y=2\left(-6\right),3\times 2x+3\times 4y=3\times 16
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x-8y=-12,6x+12y=48
Whakarūnātia.
6x-6x-8y-12y=-12-48
Me tango 6x+12y=48 mai i 6x-8y=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y-12y=-12-48
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-20y=-12-48
Tāpiri -8y ki te -12y.
-20y=-60
Tāpiri -12 ki te -48.
y=3
Whakawehea ngā taha e rua ki te -20.
2x+4\times 3=16
Whakaurua te 3 mō y ki 2x+4y=16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+12=16
Whakareatia 4 ki te 3.
2x=4
Me tango 12 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 2.
x=2,y=3
Kua oti te pūnaha te whakatau.