Whakaoti mō x, y
x=\frac{5}{33}\approx 0.151515152
y=-\frac{17}{33}\approx -0.515151515
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-3y=2,4x+7y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-3y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=3y+2
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(3y+2\right)
Whakawehea ngā taha e rua ki te 3.
x=y+\frac{2}{3}
Whakareatia \frac{1}{3} ki te 3y+2.
4\left(y+\frac{2}{3}\right)+7y=-3
Whakakapia te y+\frac{2}{3} mō te x ki tērā atu whārite, 4x+7y=-3.
4y+\frac{8}{3}+7y=-3
Whakareatia 4 ki te y+\frac{2}{3}.
11y+\frac{8}{3}=-3
Tāpiri 4y ki te 7y.
11y=-\frac{17}{3}
Me tango \frac{8}{3} mai i ngā taha e rua o te whārite.
y=-\frac{17}{33}
Whakawehea ngā taha e rua ki te 11.
x=-\frac{17}{33}+\frac{2}{3}
Whakaurua te -\frac{17}{33} mō y ki x=y+\frac{2}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5}{33}
Tāpiri \frac{2}{3} ki te -\frac{17}{33} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{5}{33},y=-\frac{17}{33}
Kua oti te pūnaha te whakatau.
3x-3y=2,4x+7y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-3\\4&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-3\\4&7\end{matrix}\right))\left(\begin{matrix}3&-3\\4&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-3\\4&7\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-3\\4&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-3\\4&7\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-3\\4&7\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3\times 7-\left(-3\times 4\right)}&-\frac{-3}{3\times 7-\left(-3\times 4\right)}\\-\frac{4}{3\times 7-\left(-3\times 4\right)}&\frac{3}{3\times 7-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{33}&\frac{1}{11}\\-\frac{4}{33}&\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{33}\times 2+\frac{1}{11}\left(-3\right)\\-\frac{4}{33}\times 2+\frac{1}{11}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{33}\\-\frac{17}{33}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{5}{33},y=-\frac{17}{33}
Tangohia ngā huānga poukapa x me y.
3x-3y=2,4x+7y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 3x+4\left(-3\right)y=4\times 2,3\times 4x+3\times 7y=3\left(-3\right)
Kia ōrite ai a 3x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
12x-12y=8,12x+21y=-9
Whakarūnātia.
12x-12x-12y-21y=8+9
Me tango 12x+21y=-9 mai i 12x-12y=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-12y-21y=8+9
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-33y=8+9
Tāpiri -12y ki te -21y.
-33y=17
Tāpiri 8 ki te 9.
y=-\frac{17}{33}
Whakawehea ngā taha e rua ki te -33.
4x+7\left(-\frac{17}{33}\right)=-3
Whakaurua te -\frac{17}{33} mō y ki 4x+7y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-\frac{119}{33}=-3
Whakareatia 7 ki te -\frac{17}{33}.
4x=\frac{20}{33}
Me tāpiri \frac{119}{33} ki ngā taha e rua o te whārite.
x=\frac{5}{33}
Whakawehea ngā taha e rua ki te 4.
x=\frac{5}{33},y=-\frac{17}{33}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}