Whakaoti mō x, y
x=0
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-y=3
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,6,2.
3x-2y=6,2x-y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-2y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=2y+6
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(2y+6\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{2}{3}y+2
Whakareatia \frac{1}{3} ki te 6+2y.
2\left(\frac{2}{3}y+2\right)-y=3
Whakakapia te \frac{2y}{3}+2 mō te x ki tērā atu whārite, 2x-y=3.
\frac{4}{3}y+4-y=3
Whakareatia 2 ki te \frac{2y}{3}+2.
\frac{1}{3}y+4=3
Tāpiri \frac{4y}{3} ki te -y.
\frac{1}{3}y=-1
Me tango 4 mai i ngā taha e rua o te whārite.
y=-3
Me whakarea ngā taha e rua ki te 3.
x=\frac{2}{3}\left(-3\right)+2
Whakaurua te -3 mō y ki x=\frac{2}{3}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2+2
Whakareatia \frac{2}{3} ki te -3.
x=0
Tāpiri 2 ki te -2.
x=0,y=-3
Kua oti te pūnaha te whakatau.
2x-y=3
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,6,2.
3x-2y=6,2x-y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-2\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-2\times 2\right)}&-\frac{-2}{3\left(-1\right)-\left(-2\times 2\right)}\\-\frac{2}{3\left(-1\right)-\left(-2\times 2\right)}&\frac{3}{3\left(-1\right)-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&2\\-2&3\end{matrix}\right)\left(\begin{matrix}6\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6+2\times 3\\-2\times 6+3\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=-3
Tangohia ngā huānga poukapa x me y.
2x-y=3
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,6,2.
3x-2y=6,2x-y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\left(-2\right)y=2\times 6,3\times 2x+3\left(-1\right)y=3\times 3
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x-4y=12,6x-3y=9
Whakarūnātia.
6x-6x-4y+3y=12-9
Me tango 6x-3y=9 mai i 6x-4y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y+3y=12-9
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=12-9
Tāpiri -4y ki te 3y.
-y=3
Tāpiri 12 ki te -9.
y=-3
Whakawehea ngā taha e rua ki te -1.
2x-\left(-3\right)=3
Whakaurua te -3 mō y ki 2x-y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=0
Me tango 3 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 2.
x=0,y=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}