Whakaoti mō x, y
x=\frac{10}{11}\approx 0.909090909
y = \frac{15}{11} = 1\frac{4}{11} \approx 1.363636364
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-2y=0,4x+y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-2y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=2y
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\times 2y
Whakawehea ngā taha e rua ki te 3.
x=\frac{2}{3}y
Whakareatia \frac{1}{3} ki te 2y.
4\times \frac{2}{3}y+y=5
Whakakapia te \frac{2y}{3} mō te x ki tērā atu whārite, 4x+y=5.
\frac{8}{3}y+y=5
Whakareatia 4 ki te \frac{2y}{3}.
\frac{11}{3}y=5
Tāpiri \frac{8y}{3} ki te y.
y=\frac{15}{11}
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{3}\times \frac{15}{11}
Whakaurua te \frac{15}{11} mō y ki x=\frac{2}{3}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{10}{11}
Whakareatia \frac{2}{3} ki te \frac{15}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{10}{11},y=\frac{15}{11}
Kua oti te pūnaha te whakatau.
3x-2y=0,4x+y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-2\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-2\\4&1\end{matrix}\right))\left(\begin{matrix}3&-2\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-2\\4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&1\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\times 4\right)}&-\frac{-2}{3-\left(-2\times 4\right)}\\-\frac{4}{3-\left(-2\times 4\right)}&\frac{3}{3-\left(-2\times 4\right)}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{2}{11}\\-\frac{4}{11}&\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 5\\\frac{3}{11}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{11}\\\frac{15}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{10}{11},y=\frac{15}{11}
Tangohia ngā huānga poukapa x me y.
3x-2y=0,4x+y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 3x+4\left(-2\right)y=0,3\times 4x+3y=3\times 5
Kia ōrite ai a 3x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
12x-8y=0,12x+3y=15
Whakarūnātia.
12x-12x-8y-3y=-15
Me tango 12x+3y=15 mai i 12x-8y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y-3y=-15
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-11y=-15
Tāpiri -8y ki te -3y.
y=\frac{15}{11}
Whakawehea ngā taha e rua ki te -11.
4x+\frac{15}{11}=5
Whakaurua te \frac{15}{11} mō y ki 4x+y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=\frac{40}{11}
Me tango \frac{15}{11} mai i ngā taha e rua o te whārite.
x=\frac{10}{11}
Whakawehea ngā taha e rua ki te 4.
x=\frac{10}{11},y=\frac{15}{11}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}