Whakaoti mō x, y
x=5
y=9
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-2y+3=0,4x+3y-47=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-2y+3=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x-2y=-3
Me tango 3 mai i ngā taha e rua o te whārite.
3x=2y-3
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(2y-3\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{2}{3}y-1
Whakareatia \frac{1}{3} ki te 2y-3.
4\left(\frac{2}{3}y-1\right)+3y-47=0
Whakakapia te \frac{2y}{3}-1 mō te x ki tērā atu whārite, 4x+3y-47=0.
\frac{8}{3}y-4+3y-47=0
Whakareatia 4 ki te \frac{2y}{3}-1.
\frac{17}{3}y-4-47=0
Tāpiri \frac{8y}{3} ki te 3y.
\frac{17}{3}y-51=0
Tāpiri -4 ki te -47.
\frac{17}{3}y=51
Me tāpiri 51 ki ngā taha e rua o te whārite.
y=9
Whakawehea ngā taha e rua o te whārite ki te \frac{17}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{3}\times 9-1
Whakaurua te 9 mō y ki x=\frac{2}{3}y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=6-1
Whakareatia \frac{2}{3} ki te 9.
x=5
Tāpiri -1 ki te 6.
x=5,y=9
Kua oti te pūnaha te whakatau.
3x-2y+3=0,4x+3y-47=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\47\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-2\\4&3\end{matrix}\right))\left(\begin{matrix}3&-2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&3\end{matrix}\right))\left(\begin{matrix}-3\\47\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-2\\4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&3\end{matrix}\right))\left(\begin{matrix}-3\\47\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&3\end{matrix}\right))\left(\begin{matrix}-3\\47\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-2\times 4\right)}&-\frac{-2}{3\times 3-\left(-2\times 4\right)}\\-\frac{4}{3\times 3-\left(-2\times 4\right)}&\frac{3}{3\times 3-\left(-2\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-3\\47\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}&\frac{2}{17}\\-\frac{4}{17}&\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}-3\\47\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}\left(-3\right)+\frac{2}{17}\times 47\\-\frac{4}{17}\left(-3\right)+\frac{3}{17}\times 47\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\9\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=9
Tangohia ngā huānga poukapa x me y.
3x-2y+3=0,4x+3y-47=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 3x+4\left(-2\right)y+4\times 3=0,3\times 4x+3\times 3y+3\left(-47\right)=0
Kia ōrite ai a 3x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
12x-8y+12=0,12x+9y-141=0
Whakarūnātia.
12x-12x-8y-9y+12+141=0
Me tango 12x+9y-141=0 mai i 12x-8y+12=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y-9y+12+141=0
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-17y+12+141=0
Tāpiri -8y ki te -9y.
-17y+153=0
Tāpiri 12 ki te 141.
-17y=-153
Me tango 153 mai i ngā taha e rua o te whārite.
y=9
Whakawehea ngā taha e rua ki te -17.
4x+3\times 9-47=0
Whakaurua te 9 mō y ki 4x+3y-47=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+27-47=0
Whakareatia 3 ki te 9.
4x-20=0
Tāpiri 27 ki te -47.
4x=20
Me tāpiri 20 ki ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua ki te 4.
x=5,y=9
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}