Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-13+y=0
Whakaarohia te whārite tuatahi. Me tāpiri te y ki ngā taha e rua.
3x+y=13
Me tāpiri te 13 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3x+y=13,2x+9y=-8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y+13
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y+13\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y+\frac{13}{3}
Whakareatia \frac{1}{3} ki te -y+13.
2\left(-\frac{1}{3}y+\frac{13}{3}\right)+9y=-8
Whakakapia te \frac{-y+13}{3} mō te x ki tērā atu whārite, 2x+9y=-8.
-\frac{2}{3}y+\frac{26}{3}+9y=-8
Whakareatia 2 ki te \frac{-y+13}{3}.
\frac{25}{3}y+\frac{26}{3}=-8
Tāpiri -\frac{2y}{3} ki te 9y.
\frac{25}{3}y=-\frac{50}{3}
Me tango \frac{26}{3} mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te \frac{25}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{3}\left(-2\right)+\frac{13}{3}
Whakaurua te -2 mō y ki x=-\frac{1}{3}y+\frac{13}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{2+13}{3}
Whakareatia -\frac{1}{3} ki te -2.
x=5
Tāpiri \frac{13}{3} ki te \frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=5,y=-2
Kua oti te pūnaha te whakatau.
3x-13+y=0
Whakaarohia te whārite tuatahi. Me tāpiri te y ki ngā taha e rua.
3x+y=13
Me tāpiri te 13 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3x+y=13,2x+9y=-8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\2&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\2&9\end{matrix}\right))\left(\begin{matrix}3&1\\2&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&9\end{matrix}\right))\left(\begin{matrix}13\\-8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\2&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&9\end{matrix}\right))\left(\begin{matrix}13\\-8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&9\end{matrix}\right))\left(\begin{matrix}13\\-8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{3\times 9-2}&-\frac{1}{3\times 9-2}\\-\frac{2}{3\times 9-2}&\frac{3}{3\times 9-2}\end{matrix}\right)\left(\begin{matrix}13\\-8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{25}&-\frac{1}{25}\\-\frac{2}{25}&\frac{3}{25}\end{matrix}\right)\left(\begin{matrix}13\\-8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{25}\times 13-\frac{1}{25}\left(-8\right)\\-\frac{2}{25}\times 13+\frac{3}{25}\left(-8\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=-2
Tangohia ngā huānga poukapa x me y.
3x-13+y=0
Whakaarohia te whārite tuatahi. Me tāpiri te y ki ngā taha e rua.
3x+y=13
Me tāpiri te 13 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3x+y=13,2x+9y=-8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2y=2\times 13,3\times 2x+3\times 9y=3\left(-8\right)
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x+2y=26,6x+27y=-24
Whakarūnātia.
6x-6x+2y-27y=26+24
Me tango 6x+27y=-24 mai i 6x+2y=26 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-27y=26+24
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-25y=26+24
Tāpiri 2y ki te -27y.
-25y=50
Tāpiri 26 ki te 24.
y=-2
Whakawehea ngā taha e rua ki te -25.
2x+9\left(-2\right)=-8
Whakaurua te -2 mō y ki 2x+9y=-8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-18=-8
Whakareatia 9 ki te -2.
2x=10
Me tāpiri 18 ki ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua ki te 2.
x=5,y=-2
Kua oti te pūnaha te whakatau.