Whakaoti mō x
x\in (-\infty,-1]\cup [\frac{1}{3},\infty)
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}+2x-1=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\times 3\left(-1\right)}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te 2 mō te b, me te -1 mō te c i te ture pūrua.
x=\frac{-2±4}{6}
Mahia ngā tātaitai.
x=\frac{1}{3} x=-1
Whakaotia te whārite x=\frac{-2±4}{6} ina he tōrunga te ±, ina he tōraro te ±.
3\left(x-\frac{1}{3}\right)\left(x+1\right)\geq 0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\frac{1}{3}\leq 0 x+1\leq 0
Kia ≥0 te otinga, me ≤0 tahi, me ≥0 tahi rānei te x-\frac{1}{3} me te x+1. Whakaarohia te tauira ina he ≤0 tahi te x-\frac{1}{3} me te x+1.
x\leq -1
Te otinga e whakaea i ngā koreōrite e rua ko x\leq -1.
x+1\geq 0 x-\frac{1}{3}\geq 0
Whakaarohia te tauira ina he ≥0 tahi te x-\frac{1}{3} me te x+1.
x\geq \frac{1}{3}
Te otinga e whakaea i ngā koreōrite e rua ko x\geq \frac{1}{3}.
x\leq -1\text{; }x\geq \frac{1}{3}
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}