Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+y=9,2x-3y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y+9
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y+9\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y+3
Whakareatia \frac{1}{3} ki te -y+9.
2\left(-\frac{1}{3}y+3\right)-3y=6
Whakakapia te -\frac{y}{3}+3 mō te x ki tērā atu whārite, 2x-3y=6.
-\frac{2}{3}y+6-3y=6
Whakareatia 2 ki te -\frac{y}{3}+3.
-\frac{11}{3}y+6=6
Tāpiri -\frac{2y}{3} ki te -3y.
-\frac{11}{3}y=0
Me tango 6 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua o te whārite ki te -\frac{11}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=3
Whakaurua te 0 mō y ki x=-\frac{1}{3}y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3,y=0
Kua oti te pūnaha te whakatau.
3x+y=9,2x-3y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\2&-3\end{matrix}\right))\left(\begin{matrix}3&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-3\end{matrix}\right))\left(\begin{matrix}9\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\2&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-3\end{matrix}\right))\left(\begin{matrix}9\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-3\end{matrix}\right))\left(\begin{matrix}9\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-2}&-\frac{1}{3\left(-3\right)-2}\\-\frac{2}{3\left(-3\right)-2}&\frac{3}{3\left(-3\right)-2}\end{matrix}\right)\left(\begin{matrix}9\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&\frac{1}{11}\\\frac{2}{11}&-\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}9\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 9+\frac{1}{11}\times 6\\\frac{2}{11}\times 9-\frac{3}{11}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=0
Tangohia ngā huānga poukapa x me y.
3x+y=9,2x-3y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2y=2\times 9,3\times 2x+3\left(-3\right)y=3\times 6
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x+2y=18,6x-9y=18
Whakarūnātia.
6x-6x+2y+9y=18-18
Me tango 6x-9y=18 mai i 6x+2y=18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y+9y=18-18
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11y=18-18
Tāpiri 2y ki te 9y.
11y=0
Tāpiri 18 ki te -18.
y=0
Whakawehea ngā taha e rua ki te 11.
2x=6
Whakaurua te 0 mō y ki 2x-3y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Whakawehea ngā taha e rua ki te 2.
x=3,y=0
Kua oti te pūnaha te whakatau.