Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+y=5,2x+y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y+5
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y+5\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y+\frac{5}{3}
Whakareatia \frac{1}{3} ki te -y+5.
2\left(-\frac{1}{3}y+\frac{5}{3}\right)+y=10
Whakakapia te \frac{-y+5}{3} mō te x ki tērā atu whārite, 2x+y=10.
-\frac{2}{3}y+\frac{10}{3}+y=10
Whakareatia 2 ki te \frac{-y+5}{3}.
\frac{1}{3}y+\frac{10}{3}=10
Tāpiri -\frac{2y}{3} ki te y.
\frac{1}{3}y=\frac{20}{3}
Me tango \frac{10}{3} mai i ngā taha e rua o te whārite.
y=20
Me whakarea ngā taha e rua ki te 3.
x=-\frac{1}{3}\times 20+\frac{5}{3}
Whakaurua te 20 mō y ki x=-\frac{1}{3}y+\frac{5}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-20+5}{3}
Whakareatia -\frac{1}{3} ki te 20.
x=-5
Tāpiri \frac{5}{3} ki te -\frac{20}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-5,y=20
Kua oti te pūnaha te whakatau.
3x+y=5,2x+y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{3}{3-2}\end{matrix}\right)\left(\begin{matrix}5\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}5\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5-10\\-2\times 5+3\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\20\end{matrix}\right)
Mahia ngā tātaitanga.
x=-5,y=20
Tangohia ngā huānga poukapa x me y.
3x+y=5,2x+y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-2x+y-y=5-10
Me tango 2x+y=10 mai i 3x+y=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3x-2x=5-10
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
x=5-10
Tāpiri 3x ki te -2x.
x=-5
Tāpiri 5 ki te -10.
2\left(-5\right)+y=10
Whakaurua te -5 mō x ki 2x+y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-10+y=10
Whakareatia 2 ki te -5.
y=20
Me tāpiri 10 ki ngā taha e rua o te whārite.
x=-5,y=20
Kua oti te pūnaha te whakatau.