Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+y=4,6x+y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y+4
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y+4\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y+\frac{4}{3}
Whakareatia \frac{1}{3} ki te -y+4.
6\left(-\frac{1}{3}y+\frac{4}{3}\right)+y=4
Whakakapia te \frac{-y+4}{3} mō te x ki tērā atu whārite, 6x+y=4.
-2y+8+y=4
Whakareatia 6 ki te \frac{-y+4}{3}.
-y+8=4
Tāpiri -2y ki te y.
-y=-4
Me tango 8 mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua ki te -1.
x=-\frac{1}{3}\times 4+\frac{4}{3}
Whakaurua te 4 mō y ki x=-\frac{1}{3}y+\frac{4}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-4+4}{3}
Whakareatia -\frac{1}{3} ki te 4.
x=0
Tāpiri \frac{4}{3} ki te -\frac{4}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0,y=4
Kua oti te pūnaha te whakatau.
3x+y=4,6x+y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}3&1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\6&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&1\end{matrix}\right))\left(\begin{matrix}4\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-6}&-\frac{1}{3-6}\\-\frac{6}{3-6}&\frac{3}{3-6}\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\2&-1\end{matrix}\right)\left(\begin{matrix}4\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 4+\frac{1}{3}\times 4\\2\times 4-4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=4
Tangohia ngā huānga poukapa x me y.
3x+y=4,6x+y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-6x+y-y=4-4
Me tango 6x+y=4 mai i 3x+y=4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3x-6x=4-4
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3x=4-4
Tāpiri 3x ki te -6x.
-3x=0
Tāpiri 4 ki te -4.
x=0
Whakawehea ngā taha e rua ki te -3.
y=4
Whakaurua te 0 mō x ki 6x+y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
x=0,y=4
Kua oti te pūnaha te whakatau.