Whakaoti mō x, y
x=\frac{6}{17}\approx 0.352941176
y = -\frac{18}{17} = -1\frac{1}{17} \approx -1.058823529
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+y=0,2x-5y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-1\right)y
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y
Whakareatia \frac{1}{3} ki te -y.
2\left(-\frac{1}{3}\right)y-5y=6
Whakakapia te -\frac{y}{3} mō te x ki tērā atu whārite, 2x-5y=6.
-\frac{2}{3}y-5y=6
Whakareatia 2 ki te -\frac{y}{3}.
-\frac{17}{3}y=6
Tāpiri -\frac{2y}{3} ki te -5y.
y=-\frac{18}{17}
Whakawehea ngā taha e rua o te whārite ki te -\frac{17}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{3}\left(-\frac{18}{17}\right)
Whakaurua te -\frac{18}{17} mō y ki x=-\frac{1}{3}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{6}{17}
Whakareatia -\frac{1}{3} ki te -\frac{18}{17} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{6}{17},y=-\frac{18}{17}
Kua oti te pūnaha te whakatau.
3x+y=0,2x-5y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\2&-5\end{matrix}\right))\left(\begin{matrix}3&1\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-5\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\2&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-5\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-5\end{matrix}\right))\left(\begin{matrix}0\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3\left(-5\right)-2}&-\frac{1}{3\left(-5\right)-2}\\-\frac{2}{3\left(-5\right)-2}&\frac{3}{3\left(-5\right)-2}\end{matrix}\right)\left(\begin{matrix}0\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}&\frac{1}{17}\\\frac{2}{17}&-\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}0\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}\times 6\\-\frac{3}{17}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{17}\\-\frac{18}{17}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{6}{17},y=-\frac{18}{17}
Tangohia ngā huānga poukapa x me y.
3x+y=0,2x-5y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2y=0,3\times 2x+3\left(-5\right)y=3\times 6
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x+2y=0,6x-15y=18
Whakarūnātia.
6x-6x+2y+15y=-18
Me tango 6x-15y=18 mai i 6x+2y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y+15y=-18
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
17y=-18
Tāpiri 2y ki te 15y.
y=-\frac{18}{17}
Whakawehea ngā taha e rua ki te 17.
2x-5\left(-\frac{18}{17}\right)=6
Whakaurua te -\frac{18}{17} mō y ki 2x-5y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+\frac{90}{17}=6
Whakareatia -5 ki te -\frac{18}{17}.
2x=\frac{12}{17}
Me tango \frac{90}{17} mai i ngā taha e rua o te whārite.
x=\frac{6}{17}
Whakawehea ngā taha e rua ki te 2.
x=\frac{6}{17},y=-\frac{18}{17}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}