Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+y=-3,x+y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y-3
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y-3\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y-1
Whakareatia \frac{1}{3} ki te -y-3.
-\frac{1}{3}y-1+y=1
Whakakapia te -\frac{y}{3}-1 mō te x ki tērā atu whārite, x+y=1.
\frac{2}{3}y-1=1
Tāpiri -\frac{y}{3} ki te y.
\frac{2}{3}y=2
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{3}\times 3-1
Whakaurua te 3 mō y ki x=-\frac{1}{3}y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1-1
Whakareatia -\frac{1}{3} ki te 3.
x=-2
Tāpiri -1 ki te -1.
x=-2,y=3
Kua oti te pūnaha te whakatau.
3x+y=-3,x+y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}3&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-1}&-\frac{1}{3-1}\\-\frac{1}{3-1}&\frac{3}{3-1}\end{matrix}\right)\left(\begin{matrix}-3\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\-\frac{1}{2}&\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}-3\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-3\right)-\frac{1}{2}\\-\frac{1}{2}\left(-3\right)+\frac{3}{2}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=3
Tangohia ngā huānga poukapa x me y.
3x+y=-3,x+y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-x+y-y=-3-1
Me tango x+y=1 mai i 3x+y=-3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3x-x=-3-1
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2x=-3-1
Tāpiri 3x ki te -x.
2x=-4
Tāpiri -3 ki te -1.
x=-2
Whakawehea ngā taha e rua ki te 2.
-2+y=1
Whakaurua te -2 mō x ki x+y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=3
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=-2,y=3
Kua oti te pūnaha te whakatau.