Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+7y=63,2x+4y=38
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+7y=63
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-7y+63
Me tango 7y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-7y+63\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{7}{3}y+21
Whakareatia \frac{1}{3} ki te -7y+63.
2\left(-\frac{7}{3}y+21\right)+4y=38
Whakakapia te -\frac{7y}{3}+21 mō te x ki tērā atu whārite, 2x+4y=38.
-\frac{14}{3}y+42+4y=38
Whakareatia 2 ki te -\frac{7y}{3}+21.
-\frac{2}{3}y+42=38
Tāpiri -\frac{14y}{3} ki te 4y.
-\frac{2}{3}y=-4
Me tango 42 mai i ngā taha e rua o te whārite.
y=6
Whakawehea ngā taha e rua o te whārite ki te -\frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{7}{3}\times 6+21
Whakaurua te 6 mō y ki x=-\frac{7}{3}y+21. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-14+21
Whakareatia -\frac{7}{3} ki te 6.
x=7
Tāpiri 21 ki te -14.
x=7,y=6
Kua oti te pūnaha te whakatau.
3x+7y=63,2x+4y=38
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&7\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}63\\38\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&7\\2&4\end{matrix}\right))\left(\begin{matrix}3&7\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\2&4\end{matrix}\right))\left(\begin{matrix}63\\38\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&7\\2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\2&4\end{matrix}\right))\left(\begin{matrix}63\\38\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\2&4\end{matrix}\right))\left(\begin{matrix}63\\38\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-7\times 2}&-\frac{7}{3\times 4-7\times 2}\\-\frac{2}{3\times 4-7\times 2}&\frac{3}{3\times 4-7\times 2}\end{matrix}\right)\left(\begin{matrix}63\\38\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&\frac{7}{2}\\1&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}63\\38\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 63+\frac{7}{2}\times 38\\63-\frac{3}{2}\times 38\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\6\end{matrix}\right)
Mahia ngā tātaitanga.
x=7,y=6
Tangohia ngā huānga poukapa x me y.
3x+7y=63,2x+4y=38
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\times 7y=2\times 63,3\times 2x+3\times 4y=3\times 38
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x+14y=126,6x+12y=114
Whakarūnātia.
6x-6x+14y-12y=126-114
Me tango 6x+12y=114 mai i 6x+14y=126 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
14y-12y=126-114
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=126-114
Tāpiri 14y ki te -12y.
2y=12
Tāpiri 126 ki te -114.
y=6
Whakawehea ngā taha e rua ki te 2.
2x+4\times 6=38
Whakaurua te 6 mō y ki 2x+4y=38. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+24=38
Whakareatia 4 ki te 6.
2x=14
Me tango 24 mai i ngā taha e rua o te whārite.
x=7
Whakawehea ngā taha e rua ki te 2.
x=7,y=6
Kua oti te pūnaha te whakatau.