Whakaoti mō x, y
x=2
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+7y=13,5x-4y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+7y=13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-7y+13
Me tango 7y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-7y+13\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{7}{3}y+\frac{13}{3}
Whakareatia \frac{1}{3} ki te -7y+13.
5\left(-\frac{7}{3}y+\frac{13}{3}\right)-4y=6
Whakakapia te \frac{-7y+13}{3} mō te x ki tērā atu whārite, 5x-4y=6.
-\frac{35}{3}y+\frac{65}{3}-4y=6
Whakareatia 5 ki te \frac{-7y+13}{3}.
-\frac{47}{3}y+\frac{65}{3}=6
Tāpiri -\frac{35y}{3} ki te -4y.
-\frac{47}{3}y=-\frac{47}{3}
Me tango \frac{65}{3} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{47}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{-7+13}{3}
Whakaurua te 1 mō y ki x=-\frac{7}{3}y+\frac{13}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2
Tāpiri \frac{13}{3} ki te -\frac{7}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=1
Kua oti te pūnaha te whakatau.
3x+7y=13,5x-4y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&7\\5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&7\\5&-4\end{matrix}\right))\left(\begin{matrix}3&7\\5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\5&-4\end{matrix}\right))\left(\begin{matrix}13\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&7\\5&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\5&-4\end{matrix}\right))\left(\begin{matrix}13\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\5&-4\end{matrix}\right))\left(\begin{matrix}13\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3\left(-4\right)-7\times 5}&-\frac{7}{3\left(-4\right)-7\times 5}\\-\frac{5}{3\left(-4\right)-7\times 5}&\frac{3}{3\left(-4\right)-7\times 5}\end{matrix}\right)\left(\begin{matrix}13\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{47}&\frac{7}{47}\\\frac{5}{47}&-\frac{3}{47}\end{matrix}\right)\left(\begin{matrix}13\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{47}\times 13+\frac{7}{47}\times 6\\\frac{5}{47}\times 13-\frac{3}{47}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=1
Tangohia ngā huānga poukapa x me y.
3x+7y=13,5x-4y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 3x+5\times 7y=5\times 13,3\times 5x+3\left(-4\right)y=3\times 6
Kia ōrite ai a 3x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
15x+35y=65,15x-12y=18
Whakarūnātia.
15x-15x+35y+12y=65-18
Me tango 15x-12y=18 mai i 15x+35y=65 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
35y+12y=65-18
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
47y=65-18
Tāpiri 35y ki te 12y.
47y=47
Tāpiri 65 ki te -18.
y=1
Whakawehea ngā taha e rua ki te 47.
5x-4=6
Whakaurua te 1 mō y ki 5x-4y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x=10
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 5.
x=2,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}