Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+7y=10,4x-19y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+7y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-7y+10
Me tango 7y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-7y+10\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{7}{3}y+\frac{10}{3}
Whakareatia \frac{1}{3} ki te -7y+10.
4\left(-\frac{7}{3}y+\frac{10}{3}\right)-19y=7
Whakakapia te \frac{-7y+10}{3} mō te x ki tērā atu whārite, 4x-19y=7.
-\frac{28}{3}y+\frac{40}{3}-19y=7
Whakareatia 4 ki te \frac{-7y+10}{3}.
-\frac{85}{3}y+\frac{40}{3}=7
Tāpiri -\frac{28y}{3} ki te -19y.
-\frac{85}{3}y=-\frac{19}{3}
Me tango \frac{40}{3} mai i ngā taha e rua o te whārite.
y=\frac{19}{85}
Whakawehea ngā taha e rua o te whārite ki te -\frac{85}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{7}{3}\times \frac{19}{85}+\frac{10}{3}
Whakaurua te \frac{19}{85} mō y ki x=-\frac{7}{3}y+\frac{10}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{133}{255}+\frac{10}{3}
Whakareatia -\frac{7}{3} ki te \frac{19}{85} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{239}{85}
Tāpiri \frac{10}{3} ki te -\frac{133}{255} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{239}{85},y=\frac{19}{85}
Kua oti te pūnaha te whakatau.
3x+7y=10,4x-19y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&7\\4&-19\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&7\\4&-19\end{matrix}\right))\left(\begin{matrix}3&7\\4&-19\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\4&-19\end{matrix}\right))\left(\begin{matrix}10\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&7\\4&-19\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\4&-19\end{matrix}\right))\left(\begin{matrix}10\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\4&-19\end{matrix}\right))\left(\begin{matrix}10\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{19}{3\left(-19\right)-7\times 4}&-\frac{7}{3\left(-19\right)-7\times 4}\\-\frac{4}{3\left(-19\right)-7\times 4}&\frac{3}{3\left(-19\right)-7\times 4}\end{matrix}\right)\left(\begin{matrix}10\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{85}&\frac{7}{85}\\\frac{4}{85}&-\frac{3}{85}\end{matrix}\right)\left(\begin{matrix}10\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{85}\times 10+\frac{7}{85}\times 7\\\frac{4}{85}\times 10-\frac{3}{85}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{239}{85}\\\frac{19}{85}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{239}{85},y=\frac{19}{85}
Tangohia ngā huānga poukapa x me y.
3x+7y=10,4x-19y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 3x+4\times 7y=4\times 10,3\times 4x+3\left(-19\right)y=3\times 7
Kia ōrite ai a 3x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
12x+28y=40,12x-57y=21
Whakarūnātia.
12x-12x+28y+57y=40-21
Me tango 12x-57y=21 mai i 12x+28y=40 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
28y+57y=40-21
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
85y=40-21
Tāpiri 28y ki te 57y.
85y=19
Tāpiri 40 ki te -21.
y=\frac{19}{85}
Whakawehea ngā taha e rua ki te 85.
4x-19\times \frac{19}{85}=7
Whakaurua te \frac{19}{85} mō y ki 4x-19y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-\frac{361}{85}=7
Whakareatia -19 ki te \frac{19}{85}.
4x=\frac{956}{85}
Me tāpiri \frac{361}{85} ki ngā taha e rua o te whārite.
x=\frac{239}{85}
Whakawehea ngā taha e rua ki te 4.
x=\frac{239}{85},y=\frac{19}{85}
Kua oti te pūnaha te whakatau.