Whakaoti mō x, y
x = \frac{20 \sqrt{210} - 140}{3} \approx 49.942511641
y = \frac{175 - 10 \sqrt{210}}{3} \approx 10.028744179
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+6y=210,\frac{1}{4}x+\frac{1}{5}y=\sqrt{210}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+6y=210
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-6y+210
Me tango 6y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-6y+210\right)
Whakawehea ngā taha e rua ki te 3.
x=-2y+70
Whakareatia \frac{1}{3} ki te -6y+210.
\frac{1}{4}\left(-2y+70\right)+\frac{1}{5}y=\sqrt{210}
Whakakapia te -2y+70 mō te x ki tērā atu whārite, \frac{1}{4}x+\frac{1}{5}y=\sqrt{210}.
-\frac{1}{2}y+\frac{35}{2}+\frac{1}{5}y=\sqrt{210}
Whakareatia \frac{1}{4} ki te -2y+70.
-\frac{3}{10}y+\frac{35}{2}=\sqrt{210}
Tāpiri -\frac{y}{2} ki te \frac{y}{5}.
-\frac{3}{10}y=\sqrt{210}-\frac{35}{2}
Me tango \frac{35}{2} mai i ngā taha e rua o te whārite.
y=\frac{175-10\sqrt{210}}{3}
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{10}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-2\times \frac{175-10\sqrt{210}}{3}+70
Whakaurua te \frac{-10\sqrt{210}+175}{3} mō y ki x=-2y+70. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{20\sqrt{210}-350}{3}+70
Whakareatia -2 ki te \frac{-10\sqrt{210}+175}{3}.
x=\frac{20\sqrt{210}-140}{3}
Tāpiri 70 ki te \frac{20\sqrt{210}-350}{3}.
x=\frac{20\sqrt{210}-140}{3},y=\frac{175-10\sqrt{210}}{3}
Kua oti te pūnaha te whakatau.
3x+6y=210,\frac{1}{4}x+\frac{1}{5}y=\sqrt{210}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{4}\times 3x+\frac{1}{4}\times 6y=\frac{1}{4}\times 210,3\times \frac{1}{4}x+3\times \frac{1}{5}y=3\sqrt{210}
Kia ōrite ai a 3x me \frac{x}{4}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{1}{4} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
\frac{3}{4}x+\frac{3}{2}y=\frac{105}{2},\frac{3}{4}x+\frac{3}{5}y=3\sqrt{210}
Whakarūnātia.
\frac{3}{4}x-\frac{3}{4}x+\frac{3}{2}y-\frac{3}{5}y=\frac{105}{2}-3\sqrt{210}
Me tango \frac{3}{4}x+\frac{3}{5}y=3\sqrt{210} mai i \frac{3}{4}x+\frac{3}{2}y=\frac{105}{2} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{3}{2}y-\frac{3}{5}y=\frac{105}{2}-3\sqrt{210}
Tāpiri \frac{3x}{4} ki te -\frac{3x}{4}. Ka whakakore atu ngā kupu \frac{3x}{4} me -\frac{3x}{4}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{9}{10}y=\frac{105}{2}-3\sqrt{210}
Tāpiri \frac{3y}{2} ki te -\frac{3y}{5}.
y=\frac{175-10\sqrt{210}}{3}
Whakawehea ngā taha e rua o te whārite ki te \frac{9}{10}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\frac{1}{4}x+\frac{1}{5}\times \frac{175-10\sqrt{210}}{3}=\sqrt{210}
Whakaurua te \frac{175-10\sqrt{210}}{3} mō y ki \frac{1}{4}x+\frac{1}{5}y=\sqrt{210}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{1}{4}x+\frac{35-2\sqrt{210}}{3}=\sqrt{210}
Whakareatia \frac{1}{5} ki te \frac{175-10\sqrt{210}}{3}.
\frac{1}{4}x=\frac{5\sqrt{210}-35}{3}
Me tango \frac{-2\sqrt{210}+35}{3} mai i ngā taha e rua o te whārite.
x=\frac{20\sqrt{210}-140}{3}
Me whakarea ngā taha e rua ki te 4.
x=\frac{20\sqrt{210}-140}{3},y=\frac{175-10\sqrt{210}}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}