Whakaoti mō x, y
x=-\frac{1}{3}\approx -0.333333333
y=\frac{1}{3}\approx 0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+6y=1,x+y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+6y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-6y+1
Me tango 6y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-6y+1\right)
Whakawehea ngā taha e rua ki te 3.
x=-2y+\frac{1}{3}
Whakareatia \frac{1}{3} ki te -6y+1.
-2y+\frac{1}{3}+y=0
Whakakapia te -2y+\frac{1}{3} mō te x ki tērā atu whārite, x+y=0.
-y+\frac{1}{3}=0
Tāpiri -2y ki te y.
-y=-\frac{1}{3}
Me tango \frac{1}{3} mai i ngā taha e rua o te whārite.
y=\frac{1}{3}
Whakawehea ngā taha e rua ki te -1.
x=-2\times \frac{1}{3}+\frac{1}{3}
Whakaurua te \frac{1}{3} mō y ki x=-2y+\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-2+1}{3}
Whakareatia -2 ki te \frac{1}{3}.
x=-\frac{1}{3}
Tāpiri \frac{1}{3} ki te -\frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{1}{3},y=\frac{1}{3}
Kua oti te pūnaha te whakatau.
3x+6y=1,x+y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&6\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&6\\1&1\end{matrix}\right))\left(\begin{matrix}3&6\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\1&1\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&6\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\1&1\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\1&1\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-6}&-\frac{6}{3-6}\\-\frac{1}{3-6}&\frac{3}{3-6}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&2\\\frac{1}{3}&-1\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\\\frac{1}{3}\end{matrix}\right)
Whakareatia ngā poukapa.
x=-\frac{1}{3},y=\frac{1}{3}
Tangohia ngā huānga poukapa x me y.
3x+6y=1,x+y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+6y=1,3x+3y=0
Kia ōrite ai a 3x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3x-3x+6y-3y=1
Me tango 3x+3y=0 mai i 3x+6y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-3y=1
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=1
Tāpiri 6y ki te -3y.
y=\frac{1}{3}
Whakawehea ngā taha e rua ki te 3.
x+\frac{1}{3}=0
Whakaurua te \frac{1}{3} mō y ki x+y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{1}{3}
Me tango \frac{1}{3} mai i ngā taha e rua o te whārite.
x=-\frac{1}{3},y=\frac{1}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}