Whakaoti mō x, y
x = -\frac{52}{7} = -7\frac{3}{7} \approx -7.428571429
y = \frac{41}{7} = 5\frac{6}{7} \approx 5.857142857
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+5y=7,2x+y=-9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+5y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-5y+7
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-5y+7\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{5}{3}y+\frac{7}{3}
Whakareatia \frac{1}{3} ki te -5y+7.
2\left(-\frac{5}{3}y+\frac{7}{3}\right)+y=-9
Whakakapia te \frac{-5y+7}{3} mō te x ki tērā atu whārite, 2x+y=-9.
-\frac{10}{3}y+\frac{14}{3}+y=-9
Whakareatia 2 ki te \frac{-5y+7}{3}.
-\frac{7}{3}y+\frac{14}{3}=-9
Tāpiri -\frac{10y}{3} ki te y.
-\frac{7}{3}y=-\frac{41}{3}
Me tango \frac{14}{3} mai i ngā taha e rua o te whārite.
y=\frac{41}{7}
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{3}\times \frac{41}{7}+\frac{7}{3}
Whakaurua te \frac{41}{7} mō y ki x=-\frac{5}{3}y+\frac{7}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{205}{21}+\frac{7}{3}
Whakareatia -\frac{5}{3} ki te \frac{41}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{52}{7}
Tāpiri \frac{7}{3} ki te -\frac{205}{21} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{52}{7},y=\frac{41}{7}
Kua oti te pūnaha te whakatau.
3x+5y=7,2x+y=-9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&5\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&5\\2&1\end{matrix}\right))\left(\begin{matrix}3&5\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&1\end{matrix}\right))\left(\begin{matrix}7\\-9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&5\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&1\end{matrix}\right))\left(\begin{matrix}7\\-9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&1\end{matrix}\right))\left(\begin{matrix}7\\-9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-5\times 2}&-\frac{5}{3-5\times 2}\\-\frac{2}{3-5\times 2}&\frac{3}{3-5\times 2}\end{matrix}\right)\left(\begin{matrix}7\\-9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&\frac{5}{7}\\\frac{2}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}7\\-9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\times 7+\frac{5}{7}\left(-9\right)\\\frac{2}{7}\times 7-\frac{3}{7}\left(-9\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{52}{7}\\\frac{41}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{52}{7},y=\frac{41}{7}
Tangohia ngā huānga poukapa x me y.
3x+5y=7,2x+y=-9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\times 5y=2\times 7,3\times 2x+3y=3\left(-9\right)
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x+10y=14,6x+3y=-27
Whakarūnātia.
6x-6x+10y-3y=14+27
Me tango 6x+3y=-27 mai i 6x+10y=14 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10y-3y=14+27
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7y=14+27
Tāpiri 10y ki te -3y.
7y=41
Tāpiri 14 ki te 27.
y=\frac{41}{7}
Whakawehea ngā taha e rua ki te 7.
2x+\frac{41}{7}=-9
Whakaurua te \frac{41}{7} mō y ki 2x+y=-9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=-\frac{104}{7}
Me tango \frac{41}{7} mai i ngā taha e rua o te whārite.
x=-\frac{52}{7}
Whakawehea ngā taha e rua ki te 2.
x=-\frac{52}{7},y=\frac{41}{7}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}