Whakaoti mō x, y
x = -\frac{22}{19} = -1\frac{3}{19} \approx -1.157894737
y = \frac{93}{19} = 4\frac{17}{19} \approx 4.894736842
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+5y=21,5x+2y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+5y=21
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-5y+21
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-5y+21\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{5}{3}y+7
Whakareatia \frac{1}{3} ki te -5y+21.
5\left(-\frac{5}{3}y+7\right)+2y=4
Whakakapia te -\frac{5y}{3}+7 mō te x ki tērā atu whārite, 5x+2y=4.
-\frac{25}{3}y+35+2y=4
Whakareatia 5 ki te -\frac{5y}{3}+7.
-\frac{19}{3}y+35=4
Tāpiri -\frac{25y}{3} ki te 2y.
-\frac{19}{3}y=-31
Me tango 35 mai i ngā taha e rua o te whārite.
y=\frac{93}{19}
Whakawehea ngā taha e rua o te whārite ki te -\frac{19}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{3}\times \frac{93}{19}+7
Whakaurua te \frac{93}{19} mō y ki x=-\frac{5}{3}y+7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{155}{19}+7
Whakareatia -\frac{5}{3} ki te \frac{93}{19} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{22}{19}
Tāpiri 7 ki te -\frac{155}{19}.
x=-\frac{22}{19},y=\frac{93}{19}
Kua oti te pūnaha te whakatau.
3x+5y=21,5x+2y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&5\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}21\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&5\\5&2\end{matrix}\right))\left(\begin{matrix}3&5\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&2\end{matrix}\right))\left(\begin{matrix}21\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&5\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&2\end{matrix}\right))\left(\begin{matrix}21\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\5&2\end{matrix}\right))\left(\begin{matrix}21\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-5\times 5}&-\frac{5}{3\times 2-5\times 5}\\-\frac{5}{3\times 2-5\times 5}&\frac{3}{3\times 2-5\times 5}\end{matrix}\right)\left(\begin{matrix}21\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{19}&\frac{5}{19}\\\frac{5}{19}&-\frac{3}{19}\end{matrix}\right)\left(\begin{matrix}21\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{19}\times 21+\frac{5}{19}\times 4\\\frac{5}{19}\times 21-\frac{3}{19}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{22}{19}\\\frac{93}{19}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{22}{19},y=\frac{93}{19}
Tangohia ngā huānga poukapa x me y.
3x+5y=21,5x+2y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 3x+5\times 5y=5\times 21,3\times 5x+3\times 2y=3\times 4
Kia ōrite ai a 3x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
15x+25y=105,15x+6y=12
Whakarūnātia.
15x-15x+25y-6y=105-12
Me tango 15x+6y=12 mai i 15x+25y=105 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
25y-6y=105-12
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
19y=105-12
Tāpiri 25y ki te -6y.
19y=93
Tāpiri 105 ki te -12.
y=\frac{93}{19}
Whakawehea ngā taha e rua ki te 19.
5x+2\times \frac{93}{19}=4
Whakaurua te \frac{93}{19} mō y ki 5x+2y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x+\frac{186}{19}=4
Whakareatia 2 ki te \frac{93}{19}.
5x=-\frac{110}{19}
Me tango \frac{186}{19} mai i ngā taha e rua o te whārite.
x=-\frac{22}{19}
Whakawehea ngā taha e rua ki te 5.
x=-\frac{22}{19},y=\frac{93}{19}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}