Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+5y=14,2x+4y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+5y=14
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-5y+14
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-5y+14\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{5}{3}y+\frac{14}{3}
Whakareatia \frac{1}{3} ki te -5y+14.
2\left(-\frac{5}{3}y+\frac{14}{3}\right)+4y=10
Whakakapia te \frac{-5y+14}{3} mō te x ki tērā atu whārite, 2x+4y=10.
-\frac{10}{3}y+\frac{28}{3}+4y=10
Whakareatia 2 ki te \frac{-5y+14}{3}.
\frac{2}{3}y+\frac{28}{3}=10
Tāpiri -\frac{10y}{3} ki te 4y.
\frac{2}{3}y=\frac{2}{3}
Me tango \frac{28}{3} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{-5+14}{3}
Whakaurua te 1 mō y ki x=-\frac{5}{3}y+\frac{14}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Tāpiri \frac{14}{3} ki te -\frac{5}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=1
Kua oti te pūnaha te whakatau.
3x+5y=14,2x+4y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&5\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&5\\2&4\end{matrix}\right))\left(\begin{matrix}3&5\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&4\end{matrix}\right))\left(\begin{matrix}14\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&5\\2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&4\end{matrix}\right))\left(\begin{matrix}14\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&4\end{matrix}\right))\left(\begin{matrix}14\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-5\times 2}&-\frac{5}{3\times 4-5\times 2}\\-\frac{2}{3\times 4-5\times 2}&\frac{3}{3\times 4-5\times 2}\end{matrix}\right)\left(\begin{matrix}14\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-\frac{5}{2}\\-1&\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}14\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 14-\frac{5}{2}\times 10\\-14+\frac{3}{2}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=1
Tangohia ngā huānga poukapa x me y.
3x+5y=14,2x+4y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\times 5y=2\times 14,3\times 2x+3\times 4y=3\times 10
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x+10y=28,6x+12y=30
Whakarūnātia.
6x-6x+10y-12y=28-30
Me tango 6x+12y=30 mai i 6x+10y=28 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10y-12y=28-30
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2y=28-30
Tāpiri 10y ki te -12y.
-2y=-2
Tāpiri 28 ki te -30.
y=1
Whakawehea ngā taha e rua ki te -2.
2x+4=10
Whakaurua te 1 mō y ki 2x+4y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=6
Me tango 4 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 2.
x=3,y=1
Kua oti te pūnaha te whakatau.