Whakaoti mō x, y
x=-6
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+5y=-8,4x+13y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+5y=-8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-5y-8
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-5y-8\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{5}{3}y-\frac{8}{3}
Whakareatia \frac{1}{3} ki te -5y-8.
4\left(-\frac{5}{3}y-\frac{8}{3}\right)+13y=2
Whakakapia te \frac{-5y-8}{3} mō te x ki tērā atu whārite, 4x+13y=2.
-\frac{20}{3}y-\frac{32}{3}+13y=2
Whakareatia 4 ki te \frac{-5y-8}{3}.
\frac{19}{3}y-\frac{32}{3}=2
Tāpiri -\frac{20y}{3} ki te 13y.
\frac{19}{3}y=\frac{38}{3}
Me tāpiri \frac{32}{3} ki ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{19}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{3}\times 2-\frac{8}{3}
Whakaurua te 2 mō y ki x=-\frac{5}{3}y-\frac{8}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-10-8}{3}
Whakareatia -\frac{5}{3} ki te 2.
x=-6
Tāpiri -\frac{8}{3} ki te -\frac{10}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-6,y=2
Kua oti te pūnaha te whakatau.
3x+5y=-8,4x+13y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&5\\4&13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&5\\4&13\end{matrix}\right))\left(\begin{matrix}3&5\\4&13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\4&13\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&5\\4&13\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\4&13\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\4&13\end{matrix}\right))\left(\begin{matrix}-8\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{3\times 13-5\times 4}&-\frac{5}{3\times 13-5\times 4}\\-\frac{4}{3\times 13-5\times 4}&\frac{3}{3\times 13-5\times 4}\end{matrix}\right)\left(\begin{matrix}-8\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}&-\frac{5}{19}\\-\frac{4}{19}&\frac{3}{19}\end{matrix}\right)\left(\begin{matrix}-8\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}\left(-8\right)-\frac{5}{19}\times 2\\-\frac{4}{19}\left(-8\right)+\frac{3}{19}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-6,y=2
Tangohia ngā huānga poukapa x me y.
3x+5y=-8,4x+13y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 3x+4\times 5y=4\left(-8\right),3\times 4x+3\times 13y=3\times 2
Kia ōrite ai a 3x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
12x+20y=-32,12x+39y=6
Whakarūnātia.
12x-12x+20y-39y=-32-6
Me tango 12x+39y=6 mai i 12x+20y=-32 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20y-39y=-32-6
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-19y=-32-6
Tāpiri 20y ki te -39y.
-19y=-38
Tāpiri -32 ki te -6.
y=2
Whakawehea ngā taha e rua ki te -19.
4x+13\times 2=2
Whakaurua te 2 mō y ki 4x+13y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+26=2
Whakareatia 13 ki te 2.
4x=-24
Me tango 26 mai i ngā taha e rua o te whārite.
x=-6
Whakawehea ngā taha e rua ki te 4.
x=-6,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}