Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-5x+2y+22x=0
Whakaarohia te whārite tuarua. Me tāpiri te 22x ki ngā taha e rua.
17x+2y=0
Pahekotia te -5x me 22x, ka 17x.
3x+5y=-24,17x+2y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+5y=-24
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-5y-24
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-5y-24\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{5}{3}y-8
Whakareatia \frac{1}{3} ki te -5y-24.
17\left(-\frac{5}{3}y-8\right)+2y=0
Whakakapia te -\frac{5y}{3}-8 mō te x ki tērā atu whārite, 17x+2y=0.
-\frac{85}{3}y-136+2y=0
Whakareatia 17 ki te -\frac{5y}{3}-8.
-\frac{79}{3}y-136=0
Tāpiri -\frac{85y}{3} ki te 2y.
-\frac{79}{3}y=136
Me tāpiri 136 ki ngā taha e rua o te whārite.
y=-\frac{408}{79}
Whakawehea ngā taha e rua o te whārite ki te -\frac{79}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{3}\left(-\frac{408}{79}\right)-8
Whakaurua te -\frac{408}{79} mō y ki x=-\frac{5}{3}y-8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{680}{79}-8
Whakareatia -\frac{5}{3} ki te -\frac{408}{79} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{48}{79}
Tāpiri -8 ki te \frac{680}{79}.
x=\frac{48}{79},y=-\frac{408}{79}
Kua oti te pūnaha te whakatau.
-5x+2y+22x=0
Whakaarohia te whārite tuarua. Me tāpiri te 22x ki ngā taha e rua.
17x+2y=0
Pahekotia te -5x me 22x, ka 17x.
3x+5y=-24,17x+2y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&5\\17&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-24\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&5\\17&2\end{matrix}\right))\left(\begin{matrix}3&5\\17&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\17&2\end{matrix}\right))\left(\begin{matrix}-24\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&5\\17&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\17&2\end{matrix}\right))\left(\begin{matrix}-24\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\17&2\end{matrix}\right))\left(\begin{matrix}-24\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-5\times 17}&-\frac{5}{3\times 2-5\times 17}\\-\frac{17}{3\times 2-5\times 17}&\frac{3}{3\times 2-5\times 17}\end{matrix}\right)\left(\begin{matrix}-24\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{79}&\frac{5}{79}\\\frac{17}{79}&-\frac{3}{79}\end{matrix}\right)\left(\begin{matrix}-24\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{79}\left(-24\right)\\\frac{17}{79}\left(-24\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{48}{79}\\-\frac{408}{79}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{48}{79},y=-\frac{408}{79}
Tangohia ngā huānga poukapa x me y.
-5x+2y+22x=0
Whakaarohia te whārite tuarua. Me tāpiri te 22x ki ngā taha e rua.
17x+2y=0
Pahekotia te -5x me 22x, ka 17x.
3x+5y=-24,17x+2y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
17\times 3x+17\times 5y=17\left(-24\right),3\times 17x+3\times 2y=0
Kia ōrite ai a 3x me 17x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 17 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
51x+85y=-408,51x+6y=0
Whakarūnātia.
51x-51x+85y-6y=-408
Me tango 51x+6y=0 mai i 51x+85y=-408 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
85y-6y=-408
Tāpiri 51x ki te -51x. Ka whakakore atu ngā kupu 51x me -51x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
79y=-408
Tāpiri 85y ki te -6y.
y=-\frac{408}{79}
Whakawehea ngā taha e rua ki te 79.
17x+2\left(-\frac{408}{79}\right)=0
Whakaurua te -\frac{408}{79} mō y ki 17x+2y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
17x-\frac{816}{79}=0
Whakareatia 2 ki te -\frac{408}{79}.
17x=\frac{816}{79}
Me tāpiri \frac{816}{79} ki ngā taha e rua o te whārite.
x=\frac{48}{79}
Whakawehea ngā taha e rua ki te 17.
x=\frac{48}{79},y=-\frac{408}{79}
Kua oti te pūnaha te whakatau.